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Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of

old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-

year ice. This transition has brought about changes in the sea ice thickness and topography characteristics,

which will further affect the evolution and survivability of the ice pack. The varying ice conditions have

substantial implications for commercial operations, international affairs, regional and global climate, our

ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and

airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal

resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced

observational capabilities are needed to augment the current strategies.

The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-

resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential

to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and

has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement

accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (50±25 cm), aircraft

attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is

considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over

a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and

observed ridge height and ridge separation distributions are found to agree with theoretical distributions to

within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent

the theoretical distributions, with differences up to 30%. Future efforts should focus on reducing the total

measurement error to <20 cm to make the CULPIS suitable for detecting ice sheet elevation change.
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Chapter 1

Overview

1.1 Scientific Rationale

Arctic sea ice areal extent, its physical properties, and its variability and distribution across the

Arctic Ocean have long been recognized to have a considerable impact on geophysical and social dynamics

(e.g. [5, 7, 10, 79, 106, 119–121]). The ice pack plays a major role in governing the heat and momentum

exchange between the atmosphere and ocean, thereby affecting weather and climate. Seasonally and annually

changing ice conditions impact shipping routes, resource exploration operations, and wildlife habitat, which

in turn influence the commerce, culture, and wellbeing of Arctic peoples and their communities. In order to

better understand, monitor, and predict the nature of sea ice and its interactions within the Earth system,

substantial effort has gone into observing and modeling its various characteristics and their evolution.

The morphology1 of Arctic sea ice is continually evolving under the the influence of oceanic and

atmospheric conditions. In general, two phenomena act to alter the thickness and topography2 of sea ice.

Thermodynamic processes are responsible for mass changes at the upper and lower boundary of the ice, and

mechanical processes, resulting from nonuniform motion of the ice, cause the formation of leads and pressure

ridges [113]. As described by Ketchum[61], the sea ice surface topography is one of the basic criteria for

visually identifying the stages of ice development or ice age. Very early stages of ice development generally

have smooth, level surfaces with only minor pressure ice formations, such as rafted ice. Later stages of

ice development, during the first year’s growth, maintain a generally level surface, but have frequent, more

1 Morphology refers herein to thickness and topography.
2 Topography refers herein to roughness and ridging.
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prominent pressure ice formations, such as ridges and rubble fields. Due to summer melting and deformation,

multiyear sea ice two or more years old has an undulating or gradual rolling surface characterized by rounded

hummocks, which are typically weathered ridges and rubble, and melt pond depressions. Second year ice

is generally hard to distinguish from first year ice, but the hummocks and melt pond topography becomes

more pronounced with each melt cycle.

Early scientific studies of Arctic sea ice morphology conducted in the late 1950s and early 1960s utilized

in situ measurements collected at drifting ice stations (e.g. station Alpha, 1957-1958 [101]) and remotely

sensed measurements collected via upward looking submarine sonar (e.g. U.S. Navy operations, 1960 [49])

to investigate ice thickness, roughness, and ridging characteristics [49, 119, 121]. These measurements were,

however, limited in their spatial and temporal extent. By the mid 1960s, various remote sensor systems

were being flown on aircraft to evaluate their usefulness for mapping and measuring sea ice conditions and

features, and by the late 1960s airborne laser altimetry was being utilized to measure sea ice freeboard and

topography [61]. It was recognized that the various stages of ice development could be identified through

interpretation of the laser topography data, and that determination of the areal coverage of ridged ice was

critical for documenting the ice mass interannual variability [51].

The initial efforts to model sea ice morphology were, in part, prompted by the relatively large collection

of observations provided by remote sensing systems, which offered a broader view of the ice conditions and

a statistical means to tune and validate the models. The theoretical efforts were based on an understanding

that the motion and resulting deformation of the ice pack produces characteristic pressure ridge features, and

that these features contain much of the gravitational and potential energy of the ice pack in their mass and

in their frictional interactions with the wind and water [113]. Hibler et al.[50] developed theories to describe

the spatial distribution of ridge heights and ridge separations, and Parmerter and Coon[97] developed a

kinematic model to describe the formation of pressure ridges. Hibler[47] and Thorndike et al.[113] built

upon this work and developed theories to model dynamic and thermodynamic changes in ice thickness due

to melting and freezing and the rearrangement of ice to form leads and pressure ridges. These theories laid

the framework for current sea ice models and indicated that the parameters of primary importance are the

ice extent, the areas of open water and very thin ice, and the ice thickness and roughness [113].
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Through the 1980s, the prevalence of airborne and sonar remote sensing observations of sea ice con-

tinued to increase (e.g. [18, 127]), and were complimented by the development of airborne and satellite

microwave imaging and radar altimetry systems (e.g. [102, 124]). Satellite imagery, in particular, made it

possible to study the synoptic temporal and spatial variability of the ice pack. Dual-polarized multispectral

microwave radiance data provided the necessary radiometric information for obtaining both the ice concen-

tration3 and the fraction of sea ice cover that is first-year and multiyear ice. These data showed large

interannual variations in the ice extent, ice concentration, and distribution of multiyear ice [14].

By the late 1990s, the body of observations that had been collected over the years suggested that the

Arctic sea ice composition had begun to transform and thin. Submarine sonar data showed a significant

decline in the mean ice draft4 between 1976 and 1996 by approximately 43% across much of the central

and eastern Arctic Ocean [104, 123, 125, 126]. Satellite microwave data revealed a reduction of about 6%

in the areal extent of the perennial ice pack between 1979 to 1989 [86], and reduction of about 14% in the

area of multiyear ice in winter during the period from 1978 to 1998 [59]. These data also indicated a strong

correlation between the area of multiyear ice and the thickness of the perennial ice pack. It was speculated

that if this apparent transformation were to continue, it may lead to a markedly different ice regime in the

Arctic, altering heat and mass exchanges as well as ocean stratification.

In light of the dramatic changes that were beginning to unfold in the Arctic, further effort went

into advancing modeling and observational capabilities. Numerical methods for describing ice thickness

distribution in sea ice models were improved (e.g. [82]), and satellite radar and laser altimeter sensors

specifically suited for collecting sea ice thickness measurements were launched (e.g. ERS-1, 1991; ERS-2,

1995; Envisat, 2002; ICESat, 2003). Observations from these satellites revealed high-frequency interannual

variability in mean sea ice thickness dominated by the length of the summer melt period [77], and an overall

decline in the thickness and volume of the ice pack explained by a decrease in the multiyear ice coverage [76].

With the combination of synoptic imagery and altimetry data, it became possible to explore relationships

between sea ice microwave brightness temperature (BT) signatures and topography features. There was

shown to be a strong correlation between ice age and thickness [75, 88], and that topography impacts the

3 Sea ice concentration is the fractional area that is covered by ice within a given region, the remaining area is open water.
4 Ice draft is the measurement of the ice depth below the waterline and serves as a proxy for total ice thickness.
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Figure 1.1: The September Arctic ice extent as observed in satellite imagery, and the mean and standard
deviation of ice extent as forecast by various climate models. The observed ice extent is declining faster than
the models projections, and the most recent observations fall well outside the model standard deviations.
Image from the National Snow and Ice Data Center (NSIDC).

observed microwave emissivity, which may translate into overestimates of ice concentrations [87].

One of the more striking changes in the Arctic ice pack in recent years is the dramatic reduction in

summertime ice extent. Climate change simulations forecast a shift to a seasonal ice cover, but the loss of

ice extent in summer appears to be happening up to 30 years ahead of the projections [111]. As illustrated

by Figure 1.1, the latest observations indicate that the September ice extent is well outside of the model

standard deviations. Ice coverage in summer 2007 reached a record minimum, with the ice extent being

42% less than in the 1980s [88]. The earlier-than-predicted decline in ice extent was, in part, the result of

relatively unusual ocean-atmosphere interdynamics stimulated by climate warming [84, 88, 94], and also by

inexact representations of sea ice dynamics [54, 103] and underestimates of the greenhouse gas response in

climate models [111, 112].

Not only has there been an abrupt reduction of the summertime sea ice extent, but there is a trend

toward an overall younger ice cover; not simply in terms of a change from perennial to first-year ice, but a

shift toward much younger and thinner ice within the remaining perennial ice pack [30, 88]. As was previously

alluded to, sea ice age is an important parameter that represents the state and evolution of the ice pack,

and indicates the longer-term climactic conditions within the Arctic [115]. The ice age record shows that
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the fraction of total ice extent composed of multiyear ice in March has decreased from about 75% in the

mid-1980s to 45% in 2011, and the proportion of the oldest ice (5+ years old) declined from about 50% of

the multiyear ice pack to 10% in 2011 [85]. Correspondingly, in 2007, 58% of the remaining multiyear ice

consisted of relatively young 2- and 3-year-old ice, compared to 35% in the mid-1980s [88].

The dramatic change in Arctic sea ice age between March 1990 and March 2010 is shown in Figure

1.2. In 1990, multiyear ice 5+ years old is present throughout the western Arctic Ocean, whereas in 2010, the

oldest multiyear ice is confined to a narrow strip along the northern Alaskan coast and Canadian Archipelago.

While the overall ice extent during March has not drastically changed, the pack is now composed primarily

of young first-year and second-year ice.

The change in ice age distribution implies two fundamental shifts over the last 30 years. First, the

ice pack has transitioned from a substantially perennial pack to a seasonal pack [95]. Second, the remaining

multiyear ice is much younger and thinner than in the past [85, 88]. Given how fast these changes have

occurred, uncertainty remains on the current and continuing loss of ice mass and its redistribution within

the Arctic Ocean (e.g. [4, 56, 72, 76, 104]), on the longer-term survivability of the ice (e.g. [71, 85, 88]), and

on the ability to simulate these changes using climate models (e.g. [55, 80, 111]).

In addition to changes in ice extent, age, and thickness, the overall ridging and roughness character-

istics can be expected to change if the ice pack is undergoing a fundamental shift in its composition. It has

been shown that the decrease in ice thickness is dominated by a replacement of ridged ice by undeformed ice

[103]. Deformation processes, such as ridging, rafting, and rubble formation, offer means of accumulating

ice mass. Additionally, changes in ice topography affect dynamical and thermodynamical processes, which

will affect the momentum and heat exchange between the ice, atmosphere, and ocean. For example surface

topography and snow accumulation affect the surface albedo, and thus the melt process [22, 100, 116]. These

complex interactions, and the degree to which they might act as positive or negative feedbacks that could

accelerate or mitigate the decline in the ice cover, are not well understood.

The extensive changes occurring in the Arctic sea ice conditions suggest that the Arctic system is

approaching a point where a return to more-stable, mid-20th century ice conditions is increasingly unlikely,

and where abrupt, dramatic changes in ice cover may become the norm [80, 88]. However, a slight recovery
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in multiyear ice extent seen in March 2011 relative to the extreme reductions in 2007 and 2008, and the

continued aging of this ice through multiple melt seasons, may suggest that the Arctic has not passed a point

beyond which it no longer supports perennial ice cover [85].

The degree to which ice morphology and associated feedback interactions are accurately treated within

climate models will affect our ability to predict Arctic and global change. Evidence suggests that ice dynam-

ics are more predictable for a thicker ice pack than for a thinner ice pack [55]. Furthermore, variations in the

prevalence of deformed and ridged ice have an impact on simulations of the ice cover redistribution, summer

melt-out, and end-of-summer areal extent [55]. Historically-based observational relationships used in sta-

tistical regression models may have less relevance in future, or even possibly present, ice regimes [55, 109].

Improved treatments of sea ice surface topography information through more extensive observational capa-

bilities and updated model parameterizations have considerable potential benefit for better understanding ice

dynamics and simulating its evolution [4, 54, 109]. Steiner[109] has demonstrated that a roughness param-

eter can be incorporated into sea ice models through the atmosphere-ice drag coefficient to provide a more

realistic representation of the boundary layer processes. However, further observational data are needed to

optimize and continually update the empirical parameterizations given the changing roughness conditions.

Routine collections of Arctic sea ice topography data are currently provided by airborne and satellite

operations, such as the National Aeronautics and Space Administration (NASA) IceBridge airborne program

and the European Space Agency (ESA) CryoSat-2 satellite mission. The launch of the NASA ICESat-2

satellite in 2016 will further these collection efforts; however, there remains an overall shortage of wide-

spread, fine-resolution sea ice topography observations (e.g. [109]). In light of the breadth of issues related

to climate warming and its relation to changing Arctic sea ice conditions, the overlying motivation for

this research is based on the presumption that laser altimetry data collected using small unmanned aircraft

systems (UAS) can be utilized to enhance our understanding of the current sea ice conditions, and to improve

our ability to simulate its future evolution.
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1.2 Airborne Laser Altimetry

The use of light detection and ranging (LIDAR) for airborne mapping of surface topography and

elevation has a rich history that has been driven by technological advancements and geophysical applications.

In the most basic sense, airborne LIDAR mapping systems have two major components: a laser altimeter and

a positioning system. The laser altimeter measures the distance, or range, from the aircraft to a reflecting

surface, and the positioning system measures the location and orientation of the aircraft such that the laser

range data can be related to the surface elevation. Brock et al.[12] provides a comprehensive overview of the

governing equations and methods affiliated with airborne laser altimetry.

As reviewed by Link et al.[81], in the mid-1960s lasers were being placed on aircraft to examine their

potential for terrain and bathymetric mapping. These first systems utilized a variety of lasers and positioning

systems, but they were primarily profiling systems whose measurement accuracy was limited by the horizontal

and vertical positioning capabilities. Over time, improved sensors, processing techniques, and positioning

methods led to the development of numerous profiling and scanning systems, which in turn broadened their

scientific application. In order to highlight the historical context of this dissertation research, the remainder

of this section discusses the progression of airborne laser altimetry as applied toward measuring Arctic sea

ice characteristics, and presents important topics which are relevant throughout this work.

In 1962, the Naval Oceanographic Office (NAVOCEANO) mounted a major sea ice surveillance pro-

gram, termed Project Birdseye, for the collection of data concerning the various ice features and conditions

in the Arctic [61]. Information on the distribution, frequency, and size of water openings, ice ridges, stages

of ice development, and other variables were needed to support the Naval ice prediction services. The early

years of Project Birdseye were largely dependent on visual observation; hence data collection was strongly

restricted by poor weather, extended periods of Arctic darkness, and the inherent human limitations for

objectively and quantitatively estimating magnitudes of ice surface features.

In 1964, in order to overcome the weaknesses inherent in visual observations, NAVOCEANO began

conducting airborne experiments over the Arctic pack ice to test and evaluate the usefulness of various

remote sensor systems for mapping and measuring sea ice conditions and features. Then, in April 1968, a
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Spectra-Physics Geodolite 3A Laser Profiler was flown onboard a Lockheed NC-121K aircraft to collect sea

ice topography data north of Barrow, AK [61]. In addition to the laser range data, barometric pressure data

were collected to measure aircraft altitude variations, and visible photographs were collected to aid with ice

feature characterization and laser topography interpretation. Based on available literature, this is one of the

first, if not the very first effort to utilize airborne laser altimetry for examining Arctic sea ice characteristics.

Some of the primary objectives of the initial NAVOCEANO efforts were to determine the usefulness

of laser altimetry for identifying and measuring sea ice ridges, ice freeboard, water openings, and to distin-

guish profile signatures of first-year and multiyear ice. It was found that identifying the surface roughness

characteristics using the laser terrain profile and visible imagery indeed made it possible to interpret the

basic stages of ice development and to distinguish between first-year and multiyear ice [49]; however, useful

estimates of ice freeboard were not possible because the aircraft altitude resolution was limited to 1.6 ft by

the capabilities of the barometric pressure sensor, which was not sufficient for measurements of freeboard.

Additionally, it was noted that the ability to measure the true ice surface height, and thus the total ice

thickness and mass, was contingent upon knowing the snow cover depth [61].

In light of the aforementioned limitations, studies in the early 1970’s focused on estimating and

removing aircraft altitude variability from the ice elevation profiles, and placed emphasis on evaluating

roughness and ridging characteristics that are not dependent on direct measurements of freeboard or highly-

accurate knowledge of snow depth. In particular, Hibler[48] developed an automated method for estimating

aircraft altitude variations from laser profiles by fitting a curve to minimum elevation points located on either

side of pressure ridges. It had been shown that these minimum elevations are depressed slightly below water

level, and thus serve as a relatively consistent reference surface and a close estimation of the local water

level [128]. The smoothed minimum elevation curve can then be subtracted from the native laser profile to

yield approximate freeboard topography elevations relatively free of aircraft altitude variations, which are in

turn used to identify the locations of pressure ridge peaks. Hibler et al.[50] then derived theoretical models

to describe ridge height and ridge separation distributions, and used the laser ridge peak observations to

validate the theory. Hibler[47] built upon this work to develop a dynamic and thermodynamic sea ice model.

Subsequent work continued to further describe and classify ridge properties in the western Arctic
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Basin. It was shown that pressure ridges are not randomly oriented, but rather prevalent wind and sea

conditions favor certain orientations for ridge formation [49, 91]. Additionally, a ridging intensity parameter

was defined in order to characterize the number and mean height of ridges over a given distance, which

gave an estimate of the volume of deformed ice per unit distance [51]. It was shown that the theoretical

ridge height and separation models were related to the ridge intensity and ice deformation, and thus have

important implications for ice dynamics and mass balance. Distinct regions of different ridging intensity

were identified, and the ridging intensity within these regions was found to vary annually. It was suggested

that annual ridging variations may affect ice production and the overall ice mass balance on longer times

scales. Accordingly, studies began to investigate the spatial and temporal variability of roughness and ridging

distribution in the Arctic Ocean and peripheral seas (e.g [10, 117]).

By the mid-1970s the potential for airborne laser altimetry to be an effective and valuable method

for measuring surface topography had been realized, and efforts grew to improve the measurement quality

and broaden its application. During this time, NASA developed the Airborne Oceanographic Lidar (AOL),

which had both profiling and experimental scanning capabilities, and was used for a variety of purposes,

including lake and river basin mapping and for estimating vegetation biomass (e.g. [65, 67, 92]). The sea

ice community began to assess the ability of airborne laser altimetry for measuring total ice thickness to

expand upon thickness measurements provided by submarine sonar in order to obtain better estimates of

the Arctic ice mass balance. The AOL was used to derive relationships between ice freeboard and ice draft

using coincident laser profile data and submarine sonar data. It was found that the ice freeboard distribution

probability density function (PDF) can be converted to an ice draft PDF by applying a simple coordinate

transformation based on the measured mean freeboard and mean draft, and thus the ice thickness distribution

can be derived from the surface topography measurement alone (e.g. [18, 127]). A strong relationship was

also found to exist between ridge sail (i.e. the portion of the ridge above water) and ridge keel (i.e. the

portion of the ridge below water) shapes and densities [114].

The advent of the Global Positioning System (GPS) offered a new method for determining the horizon-

tal and vertical position of airborne laser altimetry systems, and in the mid-1980s NASA began conducting

experiments to determine the positioning accuracy that could be achieved using kinematic, dual-frequency,
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carrier phase, differential GPS (dGPS) processing techniques. It was found that close-baseline (.30 km)

dGPS could provide 1-2 cm vertical precision and 10-25 cm vertical accuracy [66], which was an improve-

ment over previous positioning methods. From that point forward GPS has been a standard component of

airborne altimeter systems.

The use of airborne laser altimetry in the Arctic continued to broaden in the 1990s, and by the end of

the decade there were dozens of commercial systems available and firms providing operational services [6].

During this time NASA developed the scanning Airborne Topographic Mapper (ATM) altimeter system,

and continued to put considerable effort into assessing and minimizing the measurement error sources. A

major component of this effort was further improving and refining GPS processing techniques. Eventually

they were able to achieve an elevation measurement accuracy of 10-20 cm over long-baseline distances of

several hundreds of kilometers (e.g. [68–70]). Spurred by the increased measurement performance offered by

GPS and the ATM, NASA focused heavily on monitoring elevation changes of the Greenland ice sheet, and

found that large sections of the southern and peripheral regions were thinning (e.g. [63, 64]).

With the rise of satellite radar and laser microwave altimetry through the 1990s and 2000s (e.g. ERS-

1, ERS-2, Envisat, ICESat), and their use for measuring sea ice freeboard and thickness (e.g. [75, 77]),

airborne laser altimetry was employed as a means to calibrate and validate the satellite observations (e.g.

[19, 27, 31]). Following the failure of ICESat in 2009, NASA launched the IceBridge program in order to

span the observational gap between ICESat and ICESat-2, which is set for launch in 2016. IceBridge is

a major airborne campaign with annual deployments in the Arctic and Antarctic whose primary purpose

is to continue the sea ice and ice sheet elevation data record between the ICESat satellite missions. Two

laser altimeters being flown during this project are the ATM and NASA’s Laser Vegetation Imaging Sensor

(LVIS) [8], and they provide the scientific community with the most frequent and readily available airborne

laser altimetry measurements of Arctic sea ice [62].

Despite the relative frequency of IceBridge flights and campaigns conducted by other institutions (e.g.

[32, 34, 57], fine-resolution airborne laser altimetry data collections over Arctic sea ice continue to be spatially

and temporally limited due to budget and weather constraints, and aircraft, sensor, and personnel availability.

Broad-scale measurements of polar sea ice provided by satellite altimetry are also currently limited due to
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the recent failure of Envisat in 2012 and the aforementioned gap between ICESat and ICESat-2. Presently,

CryoSat-2 is the only satellite altimeter providing polar ice elevation measurements. Additionally, current sea

ice research is heavily focused on assessing total ice thickness, and little attention is given to monitoring ice

roughness and ridging distributions and variability. In light of the dramatic changes occurring in the Arctic,

it is evident that there exists a need to increase the overall observational capabilities at high latitudes, and

to collect fine-resolution data to monitor changes in ice topography which can be used to augment, calibrate,

and validate the lower-resolution satellite data.

In recent years, technical advancements promoting sensor miniaturization and reduced cost have

favored the development of new instrument payloads that are small, light, and inexpensive. These payloads

are particularly suitable for use on small UAS, which have become more readily available to the scientific

community and show great potential for geophysical research. UAS offer flexible payload integration options

and often have less logistical requirements than manned research aircraft. They have the ability to operate

in harsh environments, they have high maneuverability, and they can fly for long distances at low altitude.

As such, they are well suited for collecting fine-resolution data in polar regions over a range of space and

time scales.

The need for increased observational capabilities in the Arctic has been recognized by international

organizations such as the Arctic Observing Network (AON), which is envisioned as a system of atmospheric,

land-based, and ocean-based environmental monitoring capabilities that will significantly advance our ob-

servations of Arctic environmental conditions. In 2009 the AON identified four immediate needs of their sea

ice observations component:

(1) A coordinated investigation to improve remote measurements of sea ice thickness and snow depth.

(2) Sustained sea ice mass balance measurements.

(3) Development of a portable, air-deployable, “disposable” energy balance station.

(4) Sustained observations of the energy balance of the atmosphere-ice-ocean boundary layer.

While airborne laser altimetry is not directly relevant to all of these needs, it is relevant for items
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(1) and (2), and UAS in general could be equipped with various instrumentation to help address all four

items. In addition to scientific applications, there is also a need for near-real-time observations of sea ice

roughness, ridging and rubble distributions to foster safe shipping and offshore exploration activities in the

Arctic. Groups such as the Arctic Monitoring and Assessment Programme (AMAP) have recognized the

potential for UAS to help achieve the needs outlined by AON and the commercial industry, and they have

created a UAS expert group to promote their use for Arctic environmental monitoring.

The first cryospheric studies to utilize UAS were conducted from 1999 to 2004 by Drs. Judy Curry and

James Maslanik from the University of Colorado at Boulder (CU) who instrumented the AAI Corporation

Aerosonde R© UAS to collect basic meteorological measurements and sea ice photography north of Point

Barrow, AK [23, 58]. Dr. Maslanik quickly recognized the potential for UAS laser altimetry, and began

developing a system suitable for use on small UAS. These efforts culminated in the form of the CU Laser

Profilometer and Imaging System (CULPIS), which was first used operationally in 2008 to collect topography

measurements of the Greenland ice sheet, and then again in 2009 to measure sea ice freeboard and roughness

in Fram Strait [21]. Assessing the capabilities of the CULPIS for ice sheet and sea ice surface profiling is

one of the primary goals of this doctoral research.

1.3 Objectives and Approach

The Arctic ice pack is undergoing dramatic changes which have considerable impact on climate and

commerce. Observations of ice freeboard (i.e. thickness) and ridging characteristics, and their distribution

and variability throughout the Arctic Ocean, are crucial for estimating the ice mass balance and predicting

the long-term survivability and conditions of the sea ice. Ice ridging characteristics, such as ridge height and

ridge separation, also impact commercial shipping routes and offshore operations. The work presented here

is motivated by the premise that the newly-developed, relatively inexpensive, and light-weight CULPIS laser

altimeter system can be deployed on small UAS to measure fundamental topographic properties of Arctic

sea ice, which will compliment and enhance the current observational capabilities, thereby improving our

ability to monitor and predict sea ice conditions, evolution, and climate change.

The CULPIS was designed specifically to be integrated into relatively small UAS, and to provide fine-
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resolution surface topography data and imagery. In general, this research focuses on assessing the capabilities

of the CULPIS for measuring sea ice freeboard, roughness, and ridging. Attention is also given to assessing

its abilities for measuring ice sheet elevation change, although that is not the primary application discussed

herein. The research hypotheses and objectives are outlined below.

The motivating hypotheses of this research assert that:

(1) A relatively inexpensive laser altimeter system can be flown on UAS over broad regions in polar

environments to collect fine-resolution surface elevation data which are pertinent for assessing the

state of polar ice conditions, and which have sufficient quality to meet the requirements of the

scientific community.

(a) The CULPIS can measure sea ice freeboard and topography with a precision less than 10 cm.

(b) The CULPIS can measure sea ice freeboard, ridge height, and ridge separation distributions.

(c) The CULPIS can measure ice sheet elevation with an accuracy less than 20 cm.

(d) The CULPIS can collect coincident elevation and imagery data to aid in their interpretation.

In accordance with these hypotheses, the primary objectives of this research are:

(1) Discuss the CULPIS sensors and their integration.

(2) Discuss the characteristics of the UAS in which the CULPIS has been integrated.

(3) Discuss the UAS campaigns in which the CULPIS has been flown.

(4) Establish the CULPIS elevation measurement accuracy and precision error magnitudes.

(a) Review the results of prior error analysis efforts.

(b) Establish the measurement error affiliated with each sensor: Laser, IMU, GPS.

(c) Establish the errors affiliated with the UAS integration: sensor offsets and misalignments.

(d) Establish the integrated, operational performance of the CULPIS.

(e) Establish the deployment operations and processing steps required to achieve high-quality data.
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(5) Compute geophysical parameters of interest from CULPIS data.

(a) Discuss considerations for measuring sea ice freeboard and topography, and ice sheet elevation.

(b) Present exemplary measurements collected during the UAS campaigns.

(c) Compute sea ice freeboard and roughness measurements.

(d) Identify sea ice ridges in the CULPIS profile data.

(e) Compute sea ice ridge height and ridge separation distributions.

(f) Compare observed ridge distributions to theoretical distributions for validation.

(6) Demonstrate the necessity of fine-resolution data for accurately measuring ridge distributions.

(a) Simulate topography measurements collected with larger altimeter footprints.

(b) Compute simulated ridge height and ridge separation distributions.

(c) Compare simulated ridge distributions to true distributions and establish the difference error.

(7) Provide recommendations for improvements and future operations.

This work will make use of data acquired by the CULPIS during two UAS campaigns, the MUlti-

Sensor Cryospheric Observation eXperiment (MUSCOX) and the Characterization of Arctic Sea Ice Exper-

iment (CASIE). During MUSCOX the CULPIS was flown out of Ilulissat, Greenland and collected surface

topography data and imagery over the Greenland ice sheet. During CASIE the CULPIS was flown out of

Ny-Ålesund, Svalbard to collect surface topography data and imagery of sea ice in Fram Strait.

The general research approach combines instrument error analysis, sensor deployment over land and

sea ice, data quality assessment, and extraction of geophysical conditions. Considerable emphasis is placed

on evaluating the overall quality of the CULPIS data, and quantifying error sources. To obtain the most

accurate surface elevation measurements, the aircraft must be accurately positioned and the laser measure-

ment footprint must be geolocated to account for changes in aircraft attitude. The ability to accurately

position the aircraft using dGPS processing, and the ability to profile a known reference surface, will be as-

sessed using ground-based and flight-based data. These comparisons will focus on quantifying the CULPIS
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sensor and system measurement error, and identifying considerations for measuring ice sheet elevation and

sea ice freeboard and ridging. Observed sea ice ridge height and ridge separation distributions are compared

to theoretical distributions to validate the CULPIS measurements, and to describe the 2009 summertime

ice conditions in Fram Strait. The degree to which the observed ridge distributions change for larger laser

footprints is also investigated.

The beginning of Chapter 1 presented the overarching scientific rational that sets the foundation and

provides motivation for this research. The goal is not to directly investigate these topics, but rather it is

to present a new observational method for collecting data, which will enhance our ability to address these

topics in the future. Chapter 2 presents the CULPIS sensor specifications, Chapter 3 presents the UAS in

which the CULPIS has been integrated, and Chapter 4 presents the campaigns in which the CULPIS has

been flown. Chapter 5 is the CULPIS error analysis. It begins by reviewing the past error analysis efforts,

then describes the individual error sources for each sensor, and finishes with evaluations of the full-system

operational measurement error. The geophysical analysis presented in Chapter 6 is focused on extracting

information on sea ice topography features and their distributions. The results and recommendations are

summarized in Chapter 7. A considerable amount of information is also presented in the appendices, which

should not be overlooked. Due to the relatively broad focus of this research, the appendices were used as

a means to organize the diverse topics and present ancillary information while maintaining a clear focus in

the main body of the text.
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The CU Laser Profilometer and Imaging System (CULPIS)

2.1 CULPIS Overview

The performance of the CULPIS is intended to meet the fundamental objectives that the system be

capable of measuring changes in ice sheet surface elevation with an accuracy of <20 cm, and changes in

sea ice topography with a precision of <10 cm. This is similar to the level of performance provided by the

NASA ATM, LVIS, and the ICESat Geoscience Laser Altimeter System (GLAS) (see Table 5.1), which are

well established laser altimeter systems [53, 66, 68, 70, 132]. In order to achieve the desired performance,

the system measures aircraft position and attitude in order to account for aircraft roll, pitch, and vertical

movement. Additionally, the CULPIS is designed specifically to be integrated into relatively small UAS

and to collect fine-resolution surface topography and imagery in polar environments. Small UAS of the low

altitude, long endurance (LALE) category typically provide a total payload capacity of 3-6 kg allocated to

a volume of ∼4000 cm3, and a power availability of 18W [communication with Dr. James Maslanik].

Small UAS are particularly well suited for polar applications since they can operate with relatively

minimal logistical requirements in conditions that would be risky for manned aircraft, such as sustained

flight at low altitude above ground level, over open ocean, and in marginal weather. However, there are, of

course, inherent risks associated with deploying newly developed technologies in challenging environmental

conditions. While considerable effort is taken to reduce the risks associated with UAS missions in polar

regions, it is important to recognize the fact that there is always the possibility of crashing or losing an

aircraft during a campaign. Given the remote deployment locations, repairs in the field may be difficult or
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impossible. In an ideal situation with sufficient funding and preparation time, multiple aircraft and payloads

are available during campaigns to provide backup and redundancy for all systems.

To achieve the operational intentions, and to address the considerations mentioned above, the CULPIS

package is designed to be relatively inexpensive, easy to reproduce and assemble, small in size and mass,

and robust. These capabilities make it feasible to be integrated on a variety of aircraft, and to be utilized

for flights-of-opportunity, which may offer limited preparation time. As will be shown, the system satisfies

the mass, volume, and power constraints imposed by small LALE-class UAS (less than 6 kg, 4000 cm3, and

18W), and the configuration of the components is somewhat flexible, such that the system can accommodate

differing payload bay spatial orientations. The system is also able to operating in harsh polar environments,

including temperatures below −30 ◦ C [communication with Dr. James Maslanik]. The CULPIS itself does

not employ any methods or technologies to mitigate icing or other adverse weather conditions; however, the

UAS generally have instrumentation and operational procedures that are used to address these issues, as

discussed further in Chapter 3.

The CULPIS components are described in Section 2.2 and Appendix B, and the system architecture

is described in Section 2.3. To date, the CULPIS has been integrated into four different UAS. These

integration efforts and the aircraft characteristics are discussed in Chapter 3. The system’s performance

is assessed in Chapter 5 with respect to its ability to accurately and precisely resolve surface elevation.

Readers are referred to Smith[107] and Edwards[25] for additional information on the component and system

characteristics, functionality, and performance. Two additional cryospheric observational packages derived

from the CULPIS, the CULPIS-X and the moulin probe, are presented in Appendix D. These systems will

not be used for this research, but they illustrate the versatility of the CULPIS design and application.

2.2 CULPIS Sensor Suite

The CULPIS is a profiling (non-scanning) laser altimeter and imaging system that is composed pri-

marily of relatively inexpensive, commercial off-the-shelf (COTS) components. As purchased, these COTS

components have differing power requirements and data rates, and cannot be synchronized in time. Instru-

ment synchronization is critical in order to facilitate laser range corrections and to take full advantage of the
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complimentary altimetry and imagery datasets.

To alleviate the issues associated with COTS components, a custom power regulation printed circuit

board (PCB) was designed to convert a single input power source to the voltages required by the various

instruments, and a custom command and data handling (C&DH) PCB was developed to control the instru-

ments and timestamp and log the measurement data [25]. The ability to power all the sensors from a single

power supply, and the self-contained data logging capabilities, drastically simplify aircraft integration efforts.

In this manner, the CULPIS does not need to interface with the autopilot hardware or software, and only

requires one power source, either supplied by batteries or the aircraft.

The CULPIS altimetry sensor consists of a single-beam, nadir-pointing Laser Technology, Inc. Uni-

versal Laser System (ULS) rangefinder that is used to measure the distance from the aircraft to the ground

surface, a NovAtel, Inc. Superstar II (SSII) GPS module that provides aircraft position, and a Microstrain,

Inc. 3DM-GX1 inertial measurement unit (IMU) that provides aircraft attitude information. The imaging

system consists of an Aiptek A-HD+ 1080P high-definition video camera, and a Canon PowerShot G10 still

camera, both of which are used to provide imagery that are coincident with the altimetry data and can serve

as a visual reference for the elevation measurements.

The CULPIS components are shown in Figure 2.1, and their power, mass, volume, and cost speci-

fications are listed in Table 2.1. Additional specifications are provided in Appendix B. In overview, the

CULPIS is a 12W system that draws 1A at 12V. It has a mass and volume of approximately 1.7 kg and

2560 cm3, and the hardware costs roughly $5100 United States Dollars (USD)1 . The system collects surface

topography measurements at 400 Hz, which corresponds to a 7.5 cm along-track sample spacing when flown

at 30 m/s, and it has a 30 cm footprint when flown at 100 m above ground level (AGL). The laser range

and IMU angular measurement errors are 2 cm and 1◦, respectively. The CULPIS measurement errors are

further discussed in detail in Chapter 5.

1 CULPIS costs are based on USD prices in spring 2010.
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Table 2.1: CULPIS component specifications. See Appendix B for additional information.

Current Voltage Power Mass Volume Cost
Component [mA] [V] [W] [g] [cm3] [USD]
ULS laser rangefinder 200 12 2.4 660 1081 1800
3DM-GX1 IMU 65 9 0.6 75 146 1500
SSII GPS receiver (10 Hz) 180 5 0.9 35 62 350
Antcom L1 GPS antenna 35 5 0.2 184 112 260
Canon G10 still camera 220 7.4 1.6 425 385 490
URBI Still camera controller 80 5 0.4 12 26 125
Aiptek 1080P HD video camera 600 5 3.0 170 315 125
C&DH & power PCBs 170 12 2.0 140 431 450
Total 1000 12 12 1701 2559 5100

Figure 2.1: The primary components of the CULPIS: (a) laser unit, (b) C&DH and power regulation PCBs,
(c) digital video camera, (d) digital still camera, (e) GPS receiver, (f) GPS antenna, (g) IMU, (h) power
supply (battery as shown, or aircraft generated power).
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Figure 2.2: The CULPIS sensor integration architecture depicting the voltage distribution, data transfer, and
camera shutter trigger signal. The system’s power components (shown in red) regulate the input power and
supply the C&DH PCB (shown in blue) with the voltages required by the various instruments. The C&DH
PCB powers and operates the peripheral instrumentation (shown in gray), timestamps the measurements,
and sends the data to the Gumstix (shown in green) for storage on a microSD card.

2.3 CULPIS Sensor Integration

The nominal CULPIS sensor integration architecture is shown schematically in Figure 2.2. A single

input power source supplies 12-18V DC and 1A to the power regulation PCB, which then down-converts the

voltage, and in turn, supplies the unregulated input voltage (12V nominal), 9V, 5V, and 3.3V to the C&DH

PCB. The voltage down-conversion performed by the power regulation PCB has a power efficiency of 93%.

The input power is provided by batteries or the aircraft generator, depending on the UAS being used.

The C&DH PCB serves as the interface between all the sensors. It supplies the unregulated input

voltage, 9V, and 5V to the laser, IMU, and GPS receiver, and stamps their measurement data with GPS

time. The timestamped data is then sent to the Gumsitx microcomputer where it is logged on a microSD

card. The altimeter system components (laser, GPS, IMU) have a cumulative data rate of 37 MB/h, which

facilitates 27 hours of continual operation when using a 1 GB storage card.

The C&DH PCB achieves accurate measurement timing by integrating the GPS receiver with a 32

kHz real-time clock. The GPS provides a standard reference time accurate to within one second, and the real-

time clock provides microsecond-level precision. The process of collecting the instrument measurements and

time stamping the data introduces a latency of 5 clock cycles, and as such, the timing of each measurement
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is accurate to within 200 µs [25].

The C&DH PCB powers the video camera and the URBI camera controller with 5V, and supplies the

unregulated input voltage to an adjustable voltage regulator, which then powers the still camera with 7.4V.

The C&DH system also sends a voltage pulse to the URBI, which then triggers the still camera shutter to

take a picture. The time at which the voltage pulse is generated is recorded on the Gumstix microSD card

such that the time of each still image is known, and the images can be easily paired with the coincident GPS

(for geolocation) and topography data. The time delay between consecutive shutter-trigger voltage pulses

can be adjusted so pictures can be taken at any time interval. Additionally, it is possible to adjust the delay

between powering on the URBI-controlled camera and the time at which the first picture is taken in order to

save memory storage space by avoiding collecting unwanted imagery while the aircraft is still on the ground

or is in transit to the study region of interest.

To achieve continual ground coverage from the still camera imagery, consecutive photos need to

overlap. Equation (2.1) specifies the still camera shutter trigger timing separation, t, that is required to

obtain a desired overlap percentage, O, between consecutive photos. The derivation of this equation is

presented in Appendix C, along with Figure C.1, which illustrates the important camera timing parameters.

t =
[100−O]

[
2H tan

(
FOV

2

)]
V

(2.1)

where...

t = still camera shutter trigger timing separation

O = consecutive photo overlap percentage, [1-100%]

H = height above ground surface

FOV = camera along-track field-of-view

V = aircraft speed

There are several features of the cameras that are worth noting. The still images and video files are

stored on the camera’s SD cards, not on the Gumstix microSD card. A 32 GB SD card (one in the still

camera and one in the video camera) can record ∼10.6 hours of video data and ∼12 hours of still photos
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with 5 second separation (see Appendix B for camera data rate specifications). The still and video cameras

must be manually turned on by pressing their power buttons prior to flight, and video recording must be

manually engaged. The video camera can be modified by wiring external switches to the power and record

circuitry, and these can then be mounted in convenient locations on the UAS for easy access. Re-engineering

of the cameras for fully autonomous operation is potentially feasible, but was not carried out in keeping with

the goal of minimizing cost and complexity.

The video data is not timestamped by the C&DH PCB, but the elapsed time is embedded in the video

file. A simple, yet effective method for timestamping the video data is to hold a GPS receiver that displays

the time-of-day in front of the camera, and the elapsed video time can then be related to the true time-of-day.

Additionally, the CULPIS components should be mounted in a way that provides access to the camera’s

power and record buttons and the SD card ports, which is a non-trivial task given the space limitations of

small UAS. Finally, the still and video imagery is only roughly geolocated by associating the image time

with the UAS GPS location, and the imagery is not orthorectified. For our purposes it serves mainly as a

visual reference for the topographic and ancillary payload measurements. These issues highlight the primary

limitations of COTS components that require attention during aircraft integration and mission operations.

With knowledgeable insight it is possible to mitigate these limitations and the constraints inherent to small

UAS.
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Chapter 3

Unmanned Aircraft Systems (UAS)

3.1 UAS Overview

The CULPIS has been integrated into four UAS platforms to date; the BAE Systems1 Manta, the

NASA Science Instrumentation Environmental Remote Research Aircraft (SIERRA), the AAI Corporation

Aerosonde R©, and the Insitu, Inc. ScanEagle. Table 3.1 provides general characteristics of these aircraft

and their payload capabilities, and Figure 3.1 shows the aircraft and their payload instrumentation. It is

common for the CULPIS to be integrated with supporting instrumentation to fully exploit the payload mass

and volume capabilities, and to provide coincident, complementary measurements. Further discussion of

these UAS and their operational use is provided below and in Sections 3.2 through 3.5.

The UAS discussed here all have differing characteristics and capabilities making them suitable for

various applications; however, they are all able to be packaged in crates for shipping, making it feasible to

transport them to virtually any location reasonably accessible by land, sea, or air. Once on site, they are all

monitored and controlled by a ground control station (GCS) pilot-operator. The GCS communicates with

the UAS via radio link when the aircraft is at close-range and in line-of-sight, and via Iridium2 satellite link

when down-range beyond line-of-sight. GPS waypoint coordinates are used to establish the UAS flight paths,

and these can be modified in real-time to address unexpected situations that may be encountered during

flight (e.g. poor weather, longer- or shorter-than-predicted flight endurance, changes in observational region-

of-interest). Typically UAS operations require between 3-8 personnel, consisting of GCS pilot-operators,

1 BAE Systems acquired Advanced Ceramics Research, Inc. in 2009
2 Iridium Communications, Inc.: http://www.iridium.com/default.aspx
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Table 3.1: Specifications and payload capabilities of the UAS in which the CULPIS has been integrated.

Platform Payload
Wingspan Speed Endurance Range Capacity Dimensions Volume

UAS [m] [m/s] [h] [km] [kg] [cm] [cm3]
Manta 2.5 21 6 453 6 38 x 25 x 13 12350
SIERRA 6.1 28 11 1108 45 55 x 40 x 40 88000
Aerosonde 3.4 26 20 1872 5 38 x 15 x 17 9690
ScanEagle 3.1 25 20 1800 3 23 x 18� 5853

Figure 3.1: The UAS in which the CULPIS has been integrated (left panels) and their associated payloads
(right panels). The campaigns in which they have been involved are listed in blue. Some of the CULPIS
components and ancillary sensors are not visible within the images.
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R/C pilots, mechanics, payload specialists, and scientists.

On-board meteorological sensors, ancillary satellite data, and weather station measurements are gen-

erally used to detect potential icing conditions (freezing temperatures with high humidity), and these areas

are avoided during flight whenever possible. Additionally, these UAS are typically equipped with heated

pitot-static tubes and carburetors or fuel injection to prevent incorrect air speed measurements from being

sent to the autopilot feedback control system, and to avoid engine failure. In calm atmospheric conditions

they have been found to fly relatively straight and level with a slow back-and-forth rolling motion and a slight

oscillation in the vertical position. It is relevant to note that the SIERRA, Aerosonde, and ScanEagle use

engine-driven generators to supply power to the payloads, and as such, the payload power is limited by fuel

consumption. At the time of writing, the Manta provides battery power, such that the payload operational

duration is limited by its power draw and the battery capacity.

3.2 Manta UAS

The BAE Systems Manta UAS [98, 99] has a relatively short endurance (6 hours), but has a slow

cruise speed (21 m/s) that promotes fine along-track spatial sampling of the surface topography. For its

small size (2.5 m wingspan) it has considerable payload mass (6 kg) and volume (12,350 cm3) capacity.

The payload bay is fairly wide with a large hatch that facilitates easy installation and convenient access to

the instrumentation. The Manta UAS flight control is managed by the Cloud Cap Technology3 Piccolo

autopilot, which includes inertial and GPS sensors and data-link radio. It supports beyond line-of-sight

operations using Iridium satellite communications, during which time the autopilot telemetry is data is

transmitted once every three seconds.

In 2008 the CULPIS was installed in the Manta and flown out of Ilulissat, Greenland to map glacier

surface topography as part of the MUSCOX campaign sponsored by the National Oceanic and Atmospheric

Administration (NOAA). Since the CULPIS is used to measure surface elevations based on the GPS altitude

and laser range, it is important to know the relative vertical offset between these instruments. Following

the CULPIS integration into the Manta, the GPS antenna was measured to be 15 cm above the laser

3 Cloud Cap Technology: http://www.cloudcaptech.com/
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sensor face. A pyrometer and a Resonon, Inc.4 60-band hyperspectral camera were in flown in addition

to the CULPIS payload to provide ancillary surface temperature data and spectral imagery. These data

are somewhat peripheral to the CULPIS, and as such, are not discussed further. However, exemplary

hyperspectral imagery collected during MUSCOX is presented in Appendix E to illustrate the nature of

these data. Extensive operational flight testing of the Manta and the CULPIS payload was carried out at

BAE Systems in Tuscon, AZ to ensure proper functionality during the deployment. Additional information

on the MUSCOX campaign is provided in Section 4.1.

3.3 SIERRA UAS

The NASA SIERRA UAS [26] is relatively large (6.1 m wingspan) UAS and can support a considerable

payload (45 kg) with medium endurance (11 hours). The payload bay is a detachable nose-cone, which

promotes accessibility and flexibility. Similar to the Manta UAS, the SIERRA UAS utilizes the Cloud Cap

Technology Piccolo autopilot for flight control. Additionally, it was instrumented with a Systron Doner

Inertial5 C-Migit tactical-grade IMU, which measured aircraft attitude at 10 Hz with an accuracy of 0.06◦.

In 2009 the CULPIS was installed in the SIERRA for the purpose of measuring sea ice topography

in Fram Strait as part of the NASA CASIE campaign based out of Ny-Ålesund, Svalbard [89]. Due to

the large payload capacity of the SIERRA, two ULS laser units and two still cameras were installed for

the CASIE deployment. One laser was pointed nadir and the other was pointed 15◦ starboard of nadir.

This combination acts as a pseudo-swath laser altimeter to provide cross-track topography measurements.

As described in Appendix F, testing was carried out to evaluate potential interference between these two

laser units. This testing identified the interference “signature” and assured that the data collected during

CASIE was not compromised. The dual still cameras provide redundancy, make it possible to collect stereo

pair imagery, and assure continuous photo coverage while flying at low altitude. Following the CULPIS

integration into the SIERRA, the GPS antenna was measured to be 41 cm above the laser sensor heads.

An array of complimentary instrumentation was installed on the SIERRA during CASIE, including

a pair of pyrometers, nadir- and zenith-viewing spectrometers, meteorological sensors, and a side-viewing

4 Resonon, Inc.: http://www.resonon.com/
5 Systron Doner Inertial: http://www.systron.com/
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Artemis, Inc.6 microASAR C-band (∼5.4 GHz) VV-polarization synthetic aperture radar (SAR) [24, 129].

To assist in the interpretation of the microASAR imagery, the CULPIS video camera was mounted with a

view angle of 45◦ off nadir to align with the SAR swath location. Extensive operational flight testing of

the SIERRA and the CULPIS payload was carried out at Crow’s Landing airfield in California to ensure

proper functionality during the CASIE deployment. More information on the CASIE campaign is provided

in Section 4.2.

3.4 Aerosonde UAS

The AAI Corporation Aerosonde UAS has a long endurance (20 hours), but can only support a

relatively small payload (5 kg). The Aerosonde is a well proven system with a long heritage of polar

operations [13, 23, 58]. In 2009 the CULPIS was installed in the Aerosonde to map sea ice topography and

wave height in Terra Nova Bay (TNB), Antarctica as part of the National Science Foundation (NSF) TNB

UAS project [13]. For this deployment the CULPIS altimeter instrumentation was installed (laser, GPS,

IMU), but the cameras were not because the Aerosonde was equipped with an independent imaging system.

Further description of the TNB campaign is provided in Section 4.3.

3.5 ScanEagle UAS

As part of a collaborative effort, the CULPIS was installed in the University of Alaska’s Insitu, Inc.

ScanEagle UAS. The ScanEagle has a long endurance (20 hours), but can only support a relatively small

payload (3 kg). The tight confines of the cylindrical payload bay make for challenging installation and difficult

access to the camera data cards; however, the aircraft is modular and the payload bay is a removable section,

which provides unique flexibility. The ScanEagle is launched with a pneumatic catapult and is recovered by

flying into and catching on a hanging tether-line cable system. Without the need for a runway or smooth

surface for take-off or landing, it possible to operate the ScanEagle from virtually any location, including large

ship decks. Integration of the CULPIS into the ScanEagle payload bay was carried out with assistance from

CU students working for the Research and Engineering Center for Unmanned Vehicles (RECUV). Special

6 Artemis, Inc.: http://www.artemisinc.net/
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thanks is extended to Josh Casserino and Eric Hall for their contribution to that effort. The ScanEagle

CULPIS package has not yet been used operationally, but it has undergone extensive testing, as described

in Appendix G, to ensure its ability to withstand the 8+ G launch acceleration force. This payload is fully

functional and currently available for scientific investigations.
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Unmanned Aircraft Campaigns

4.1 Multi-Sensor Cryospheric Observation Experiment 2008 (MUSCOX)

The CULPIS, along with a supporting array of instrumentation, was integrated into two Manta UAS

for the NOAA-sponsored MUSCOX campaign carried out in July 2008. The MUSCOX project was the

first time UAS were used in Greenland for scientific purposes, and the primary goal was determination of

the changing volumes of surpraglacial melt water lakes through the fusion of disparate datasets from in

situ, airborne, and satellite sensors [1]. Furthermore, the project was a pilot study to demonstrate that

fine-resolution, scientific-quality ice surface topography data and imagery can be collected with the CULPIS

flown on UAS.

The MUSCOX study area and the flight tracks for the five science mission flights over the ice sheet

are shown in Figure 4.1. The black box indicates the flight domain approved by the Danish Civil Aviation

Administration. Data collection efforts were focused in the vicinity of three supraglacial melt lakes, which are

the black features visible in the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image.

A detailed view of the flight tracks within the study region is shown in the bottom panel of Figure 4.1.

Adjacent tracks are spaced approximately 500 m apart. The science flights typically lasted 3-4 hours and

covered 250-400 km per flight. By the end of the campaign, roughly 10 hours had been spent within the

study region collecting ice sheet observations.

The Manta UAS and the CU personnel who were on deployment in Ilulissat, Greenland during the

MUSCOX campaign are shown in Figure 4.2. This picture provides a sense of scale for the size of the Manta
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Figure 4.1: The top panel shows the full MUSCOX flight domain and flight tracks. The deployment was
based out of Ilulissat, Greenland, and the domain was authorized by the Danish air traffic authorities.
Jakobshavn Isbræ and the Ilulissat Icefjord are discernible toward the top of the image. The bottom panel
is a closeup view of the scientific study region, which was focused around the vicinity of several supraglacial
melt lakes. The background image in both panels is a false-color MODIS scene collected on 8 July 2008.
Flights A-I, N, O, and P were operational checkout flights and are not shown here.
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Figure 4.2: The Manta UAS and the CU personnel in Ilulissat, Greenland during the MUSCOX campaign.
From left to right, James Maslanik, R. Ian Crocker, and John Adler.

UAS and depicts the general environmental surroundings in the vicinity of the Ilulissat airport.

As discussed by Adler[1], supraglacial melt lakes form on the Greenland ice sheet during the summer

months and drain rapidly throughout the melt season as the ice sheet slowly shits and cracks. However,

melt lake dynamics and the significance of their drainages for enhancing the ice sheet flow are not well

understood. As such, it is important to quantify the melt lake water volume since their drainage via

crevasses or moulins enables the injection of water directly into the ice sheet, which may contribute to basal

lubrication. Accordingly, one of the goals of MUSCOX was to generate a fine-resolution digital elevation

model (DEM) of the ice sheet surface in order to measure the areal extent, volume, and potential drainage

routes of supraglacial melt lakes. The DEM generated from CULPIS data is presented as Figure L.1 on page

174, and serves as an example of the CULPIS utility for ice sheet topography mapping. Adler[1] used the

CULPIS data, and a suite of ancillary measurements, to further study the ice sheet melt dynamics. For the

purposes of this research, the MUSCOX CULPIS data are used primarily for assessing the quality of the

laser altimetry measurements and for qualitatively demonstrating the system’s utility for making ice sheet

observations.
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4.2 Characterization of Arctic Sea Ice Experiment 2009 (CASIE)

In July 2009 the CULPIS was flown onboard the SIERRA UAS to map sea ice topography in Fram

Strait off the coast of Svalbard during the NASA-sponsored CASIE project [89]. A suite of supporting

instrumentation was also flown, including nadir- and zenith-pointing spectrometers, a pair of pyrometers,

the microASAR [24, 129], and meteorological sensors, taking advantage of the large payload capacity of the

aircraft. Operations were based out of Ny-Ålesund, Svalbard, and the flight tracks for the six science mission

flights are shown in Figure 4.3. The black triangle indicates the flight domain approved by the Norwegian

Civil Aviation Administration. The science flights typically lasted 6-11 hours and covered 500-1100 km per

flight. Unfortunately, the CULPIS altimetry data were not recorded during flight 10, likely due to a poor

connection of the data storage card. By the end of the campaign more than 24 hours had been spent flying

over more than 2500 km of sea ice. Science mission flights occurred in late July, toward the end of the melt

season. The sea ice appeared to have minimal snow cover and extensive melting.

The SIERRA UAS and the NASA and CU personnel who were on deployment in Ny-Ålesund, Svalbard

during the CASIE campaign are shown in Figure 4.4. This picture provides a sense of scale for the size of

the SIERRA UAS and depicts the general environmental surroundings in the vicinity of the Ny-Ålesund

airport.

The broad, overarching intention of CASIE was to leverage the suite of measurements, along with

ancillary satellite data, to examine sea ice morphology, determine how ice roughness and thickness vary as

a function of ice type and ice age, and improve our understanding of how the ice physical properties are

expressed in remotely-sensed data [89]. This is similar in premise to a study discussed by Comiso et al.[18] in

which multisensor intercomparisons were used to investigate relationships between the sensor measurements

in terms of ice cover characteristics to assess the potential utility of using a combination of two or more

sensors, and to determine the extent to which geophysical ice parameters derived from one sensor can be

verified with the aid of other sensors. Conducted in the mid-1980s, that study was motivated by the fact that

numerous measurements (e.g. microwave BT, SAR backscatter, radar and laser altimetry) were beginning

to be collected from satellites (e.g. ERS-1, EOS) and aircraft (e.g. NASA P-3A). If the performance of
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Figure 4.3: The CASIE study region and the science mission flight tracks. Data collection efforts were
restricted to the flight domain authorized by Norwegian air traffic authorities. The deployment was based
out of Ny-Ålesund, Svalbard. The background image is a true-color MODIS scene collected on 24 July 2009.
The dark-colored northeastern coast of Greenland is visible toward the top left. The white sea ice pack and
dark blue open ocean are clearly evident, and the snow-covered island of Spitsbergen, Svalbard is located
toward the bottom right. Flights 1-6 were operational checkout flights and are not presented here.
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Figure 4.4: The SIERRA UAS and the NASA and CU personnel in Ny-Ålesund, Svalbard during the CASIE
campaign.

the sensors and the interrelation of their measurements could be validated in terms of their inferred ice

parameters (e.g. ice extent, ice age, ice thickness, ice concentration), then their value for monitoring of

global sea ice would be greatly enhanced.

The CASIE project aims to accomplish a similar task, but it is focused on assessing new sensors and

technologies affiliated with UAS operations to determine their data quality and their utility for complimenting

and augmenting satellite measurements of sea ice conditions. As discussed by Tucker et al.[118] and illustrated

by Figure 4.5, ice discharging through Fram Strait can originate in essentially any part of the Arctic Basin.

Floes that form in the western Arctic arrive at the strait via the Transpolar Drift and may include a relatively

large percentage of multiyear ice, while ice from the Laptev and Kara seas can take a more direct approach

to the strait and should include a larger percentage of younger ice. Thus the ice transiting Fram Strait

could have originated in any number of different areas within the Arctic Basin. This suggests that if ice

properties are strongly influenced by area of origin, or the environmental conditions they experience, then

a large variation in properties might be observed in the Fram Strait. For these reasons, Fram Strait was

chosen as the CASIE study region. The research presented herein focuses on the analysis of the CULPIS

altimetry data, but the full multisensor dataset collected during CASIE has not been exploited and provides

considerable potential for further analysis.
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4.3 Terra Nova Bay 2009 (TNB)

In September and October 2009 the CULPIS laser altimeter instrumentation was flown onboard the

Aerosonde UAS to map sea ice topography and wave heights in the Southern Ocean between McMurdo

and TNB, Antarctica as part of the NSF-sponsored TNB UAS project. The Aerosonde was launched and

operated from the Pegasus ice runway near McMurdo. The primary objective of this campaign was to make

wintertime observations of the atmosphere, open ocean, and sea ice surface to investigate the boundary layer

evolution of the katabatic winds propagating over the polynya in TNB. Flight conditions were especially

challenging, with temperatures below -30◦C, winds in excess of 15 m/s, and flight times up to 17 hours [13].

The TNB project is not a primary focus of this article, but it is mentioned here to illustrate the capabilities

of UAS and the CULPIS to collect science data in harsh conditions over broad ranges.
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Chapter 5

CULPIS Error Analysis

5.1 Error Analysis Overview

The primary objective of this chapter is to assess the CULPIS measurement capabilities for the

purpose of glacier and sea ice surface profiling. Previous investigations carried out by Smith[107] and

Edwards[25] utilized laboratory bench-testing and model simulations during the instrument design phase

in order to quantify the theoretical surface measurement performance. The work presented here builds

upon those efforts, but focuses on characterizing the fully-integrated CULPIS operational performance using

data collected in the field during the MUSCOX and CASIE projects. These are the first two campaigns

in which the CULPIS was deployed operationally to collect scientific topography data of ice sheets and sea

ice. Evaluating the measurement performance using data collected during campaign operations is a logical

and essential exercise to follow the previous laboratory and model testing as it will capture variable GPS

errors dependent upon the time and geographic location of deployment, and will illuminate practical issues

associated with the aircraft integration, the flight conditions, and the surface target of interest.

The assessment of airborne laser altimetry measurement capabilities is a fairly involved process which

has a long and continually ongoing history of activities. The main objective of these efforts is to understand

the sampling characteristics and error sources of the altimeter system, evaluate how those impact the surface

elevation measurements, and then identify the resulting implications for geophysical analysis. With the de-

velopment of new technologies and the with the growth of airborne laser altimetry applications, performance

assessments are routinely conducted to evaluate the measurement quality. As GPS became readily available
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Table 5.1: The nominal sampling characteristics and measurement accuracy for select NASA laser altimeter
systems. The ATM and LVIS are airborne systems and ICESat is a satellite system.

Laser AGL Flight Beam Footprint Spatial Vertical
Altimeter Altitude Divergence Diameter Sampling Accuracy
System [m] [mrad] [cm] [m] [cm] Reference
ATM 800 2.1 85 400 m wide swath <20 [68, 70, 105]
LVIS 10,000 2 2000 2 km wide swath <20 [8, 52, 53]
ICESat 600,000 60 e−3 7000 170 m along-track <15 [11, 73, 132]

during 1980s, NASA began evaluating dGPS positioning capabilities for use with it’s AOL altimeter system

[66]. For several years following the development of their ATM system they placed considerable effort toward

evaluating its capabilities for detecting ice sheet elevation change and beach erosion, and for calibrating and

validating ICESat measurements (e.g. [68–70, 105, 131]). Similar assessments were also carried out for the

LVIS system to evaluate its ability to measure forest canopy structure and estimate biomass [8, 52, 53].

The sampling characteristics and measurement accuracy of three NASA altimeter systems are shown

in Table 5.1. These systems represent the typical performance capabilities which are available to the scientific

community, and they serve as reference relative to which the CULPIS will be evaluated. More specifically,

the NASA IceBridge science team has defined baseline performance requirements for measuring ice sheet

and sea ice elevation, which are adopted as the goal performance for CULPIS. They specify that ice sheets

should be measured with a vertical accuracy of 20 cm or better, and sea ice surface elevations should be

measured with a shot-to-shot precision less than 10 cm with a footprint diameter less than 1 m spaced less

than 3 m apart1 .

The performance of the ATM and LVIS airborne systems have been determined through a number

of methods. To begin, the instrument locations and alignments within the aircraft are very accurately

measured during integration (location accuracy of 1 mm, angular alignment accuracy of 0.01◦ [70]). Then,

the aircraft trajectory, attitude, and position are determined using highly accurate IMU angle measurements

(accuracy of 0.02◦ [70]) and dGPS altitude measurements (accuracy of ∼10 cm [70]). The importance

of these measurements will become more evident throughout this chapter. Finally, the operational system

performance is evaluated by collecting repeat measurements over surveyed “ground truth” reference surfaces,

1 IceBridge measurement requirements available at the science team webpage: http://bprc.osu.edu/rsl/IST/
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such as airport runways (e.g. [68, 70]), ice sheets (e.g. [68, 70]), beach coastline (e.g. [69, 105]), and open

ocean (e.g. [131]). Achieving the full breadth of these efforts is beyond the scope of this research, but these

past studies are used as a guide and a reference for the CULPIS performance assessment.

The coordinate frames and sensor measurements associated with airborne laser altimetry are shown

in Figure 5.1. The relative alignment and offsets of these frames are directly relevant for deriving surface

elevation and assessing the error in these elevations. The inertial reference frames affiliated with the earth

ellipsoid (e), local sea level (sl), and the aircraft vehicle (v) are offset in the vertical direction, but assumed

to be aligned horizontally over the relatively short distance between the laser measurement point (m) and

the vehicle nadir point on the surface. The laser, IMU, and GPS frames are fixed within the aircraft

body (b) frame, but are offset and possibly misaligned with one another and with the inertial frames.

Uncertain knowledge of these offsets and alignments is the source of error in airborne laser altimetry surface

elevation measurements, as discussed throughout this chapter. Readers are referred to Edwards[25] for a

more comprehensive review of these coordinate frames.

Due to project budget and time constraints, it was not possible to measure all the offsets and align-

ments between the sensor frames (laser, IMU, GPS, aircraft body), and most of them are not accounted for

in the surface elevation computation. The exception is that the vertical offset between the GPS antenna

and the laser sensor face was measured following the UAS integrations, and were found to be ∼15 cm for

the Manta (MUSCOX) and ∼41 cm for the SIERRA (CASIE). Without the horizontal offset and alignment

measurements, their values are set to zero for convenience, which implies perfect co-location and alignment

between the frames. It is clearly not physically possible for the sensor and aircraft frames to be located

at the same point in space, and the approach taken here does introduce errors into the surface elevation

measurements due to the lever-arm offsets and sensor misalignments.

Given the available information, the east, north, and vertical (ENV) location of the laser footprint

measurement point on the Earth’s surface is computed using Equation 5.1. The yaw/heading is measured

clockwise relative to true North, and the footprint (fp) elevation (Vfp) is relative to the WGS84 ellipsoid.

Notice the the vertical separation between the GPS antenna and laser sensor face (Zgl) is subtracted from

the GPS altitude (Vgps) as a means to account for this offset and effectively locate the GPS antenna in the
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same horizontal plane as the laser. However, any horizontal offset that may exist between the antenna and

laser will translate into the vertical dimension as the aircraft attitude changes and the coordinate frames

rotate accordingly. The elevation error introduced by this horizontal lever-arm effect is discussed further

in Section 5.3.4. Future effort should be placed on measuring all the frame offsets and alignments, and

the mathematics for deriving the laser footprint surface location (i.e. Equation 5.1) should be updated to

account for them.
Efp

Nfp

Vfp

 = Ryaw ·Rroll ·Rpitch ·


Egps

Ngps

Vgps − Zgl − L

 (5.1)

where...

Rroll =


cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)



Rpitch =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)



Ryaw =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


Zgl = vertical offset between the GPS antenna and laser sensor face

L = laser range measurement

φ = roll

θ = pitch

ψ = yaw/heading

(5.2)
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As described above, CULPIS surface elevation measurements are derived directly from the laser range

data, the IMU pointing data, and the GPS position data. The IMU and GPS data are interpolated to the laser

sample times to generate a synchronous dataset, and Equation 5.1 is used to compute the east, north, and

vertical coordinates of the laser footprint location relative to the WGS84 ellipsoid. This is the means by which

surface elevation is derived from the CULPIS sensor data throughout this study. The measurement error

inherent to each individual sensor will translate into errors in the derived surface elevations. Accordingly,

the assessment presented in this chapter begins by examining the error affiliated with each sensor, which

includes a more detailed discussion of the sensor alignment and offset errors, and finishes with an analyses

of the full-system operational performance and its practical surface profiling capabilities.

The GPS vertical positioning inaccuracies contribute substantially to the CULPIS elevation mea-

surement error budget, and thus garners a considerable amount of attention in Section 5.3.3. Appendix I

provides a review of basic GPS positioning methodology, mathematical formulation, and inherent metrics

which are used to assess the solution quality. The primary goal of the GPS assessment is to quantify the

vertical error of the position solutions computed using the NovAtel Waypoint 8.10 GrafNav GPS processing

software. This software package serves as a black-box post-processing tool utilized to perform kinematic,

L1 carrier phase, differential positioning of the CULPIS GPS data. While this software provides substantial

positioning capabilities and a certain level of convenience, there is minimal description of its proprietary

processing algorithms. As such, it was necessary to become familiar with its functionality and to explore

its capabilities in order to achieve the best-possible GPS positions. Furthermore, the accuracy of dGPS is

known to degrade over long baseline distances, so it is important to establish the positioning capabilities for

the baselines encountered in Arctic campaigns.

The strategy implemented to assess the operational quality of CULPIS altimetry measurements is

based on first performing a ground-based GPS survey of the airport runway at the deployment location in

order to generate a “truth” reference surface using local-baseline dGPS (“local” implies a very-short baseline

distance, <300 m). The survey data are also used to assess the vertical error of dGPS position solutions

computed using a wide range of baseline distances. CULPIS data are then collected during repeat flights over

the runways, and the derived surface elevations are compared to the “truth” reference surface to evaluate
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the operational quality of the CULPIS measurements. This method is outlined as follows:

(1) Generate a “ground-truth” reference surface by surveying the airport runway.

• Collect repeat, ground-based GPS elevation data along the central transect of the runway.

• Compute the L1-carrier, local-baseline, dGPS position solutions for the runway transect data.

• Compute the mean transect elevation profile and use this as the “truth” reference surface.

(2) Evaluate the vertical position quality of the local-baseline runway transect dGPS solutions.

• Compute differences between local-baseline dGPS transect data and the reference surface.

• Compute mean, standard deviation, root-mean-square (RMS), and variogram error statistics.

• This represents the highest-quality dGPS positioning capabilities.

(3) Evaluate the runway transect dGPS quality of solutions computed using a range of baselines.

• Compute L1 dGPS runway transects using all available reference stations within 1000 km.

• Compute differences between all the baseline dGPS transects and the reference surface.

• Compute mean, standard deviation, RMS, and variogram error statistics.

• This represents the CULPIS dGPS positioning quality over a range of baselines.

(4) Evaluate the CULPIS operational system performance.

(a) Compare runway elevation profile data collected during flight to the runway reference surface.

• Compute differences between the runway profile data and the reference surface.

• Compute mean, standard deviation, RMS, and variogram error statistics.

• This represents the CULPIS measurement quality achieved during MUSCOX and CASIE.

(b) Compare co-located data collected at the intersections of MUSCOX crossover flight-lines.

• Compute the elevation difference mean, standard deviation, and RMS error statistics.

• Additional characterization of the CULPIS measurement quality during MUSCOX.

(c) Investigate the sea ice surface profiling capabilities using data collected during CASIE.

• Discuss considerations for profiling sea ice freeboard, roughness, and ridging.



www.manaraa.com

45

5.2 Prior Error Analysis

Before delving into the operational error analysis of the CULPIS, it is relevant to review past analyses

conducted by Smith[107] and Edwards[25] during the development of the system. Their efforts led to the

current system’s hardware and software architecture that is described in Chapter 2, and provides a foundation

for the analysis presented in the following sections.

Smith[107] began investigating the potential for a small UAS altimeter by simulating the systematic

performance that could be expected onboard an Aerosonde UAS, and by identifying the surface elevation

measurement error sources. He focused primarily on evaluating the error of two IMU sensors that were

property of the research group, the Microstrain 3DM and the 3DM-G. Laboratory static testing revealed

that these two IMUs have similar performance, with roll and pitch error standard deviations of ∼0.05◦, and

a higher yaw error standard deviation of ∼0.18◦. Both units were found to have minimal systematic drift.

Dynamic testing revealed that the angular determination error increased significantly up to 10◦ at angular

rates >100◦/s, which is well beyond the rate expected during nominal UAS flight.

Data collected during CASIE reveal that typical aircraft attitude dynamics are on the order of 1◦/s (see

Section 5.3.2). At a slightly more conservative rate of 2◦/s, Smith’s tests indicate that the IMU measurement

error would be ∼1◦. The manufacturer states a pointing error of ±2◦ in dynamic environments; however,

it is likely that this error level is valid for angular rates higher than those expected during typical UAS

flight, and thus, the measured error of ∼1◦ is quite reasonable. Smith used the empirical error statistics to

parameterize an IMU sensor model, and then simulated elevation measurements collected over a flat surface.

The simulations showed that the IMU angular determination error introduced an error of ±1 cm to the

elevation measurements during low-dynamic, near-level flight at 100 m AGL. It was also found that the

simulated GPS altitude error contributed the most error to the elevation measurements.

Edwards[25] built upon Smith’s work with a primary objective to evaluate “the operational and in-

strumental considerations for a high-accuracy laser profiling system mounted on a small UAS measuring

the topography and thickness of freeboard sea ice in the Arctic.” He began by quantifying the ULS laser

measurement error, and found that it has a precision (error standard deviation) of 1.34 cm when operated at
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500 Hz without averaging consecutive pulses. He then put effort into evaluating GPS processing methodolo-

gies and characterizing the static positioning performance. The IMU, laser, and GPS empirical error values

were used to develop improved sensor simulations, and a full system model was implemented to quantify the

elevation measurement error over an artificial sea ice surface. Using the knowledge gained from the system

simulations, Edwards concluded by developing the basic hardware and software that serves as the CULPIS

payload computer to provide accurate measurement timing.

Static testing of the CULPIS NovAtel SSII GPS receiver in Boulder, CO drew attention to a number of

pertinent issues. In general, GPS vertical positioning is 2-3 times less precise than horizontal positioning due

to the inherent geometry of the GPS satellite constellation. Satellites are not located below the measurement

point, which leads to a relatively high vertical dilution of precision (VDOP) and correspondingly poor vertical

positioning [90]. Additionally, code phase processing based on pseudorange measurements yields a RMS error

of 2-5 m, and as such, carrier phase differential processing is needed to achieve the performance required

for ice surface profiling. While dual-frequency differential positioning provides higher-quality solutions than

single-frequency positioning, dual-frequency receivers start out around $4000, which was beyond the project

budget constraints during the developmental phase. As such, the single-frequency SSII receiver, which costs

∼$350, was chosen for CULPIS.

In kinematic dGPS positioning, the observations from a roving receiver are differenced against those

from a reference ground station to resolve carrier ambiguities and remove common ranging errors. The ability

to accurately resolve the carrier phase is critical when one considers that one carrier cycle offset corresponds

to 19 cm of error. With short baseline distances between the rover and reference stations, ranging inaccuracies

stemming from satellite clock, ephemeris errors, multipath, and ionospheric and tropospheric refraction are

relatively equal, and are thus removed in the difference. As the baseline distance grows, the GPS signals

received at the two receivers will have traveled through different regions of the atmosphere, and their errors

will not fully cancel in the difference. The remaining error level is dependent upon the atmospheric activity,

but in general, as baseline distance increases the propagation errors become larger and dGPS position

solutions become less accurate. Examples of this are shown in Figure 5.2, which generally shows decreasing

accuracy and precision with increasing distance. The left panel depicts the vertical accuracy for various
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GPS positioning methods, and the right panel shows the vertical precision (standard deviation) for single

and dual frequency static positioning. The remaining atmospheric and multipath propagation errors cause

a positioning error that slowly varies on the order of 1-4 hours with the changing satellite geometry.

Static tests of the CULPIS GPS receiver showed that for a 1 km baseline the carrier solution was

two orders of magnitude better than code solution; however, for baselines >20 km the kinematic ambiguity

resolution (KAR) algorithm could not fix an integer ambiguity using the L1 carrier alone, and a less-accurate

floating point ambiguity was resolved. The L1 dGPS error was found to be ±1 m with a standard deviation

on order of 50 cm for a 500 km baseline. The tests also showed that vertical positioning in Barrow is expected

to be 15% less precise than in Boulder based simply on the ratio of the VDOP values in those locations.

Edwards implemented a full system model to evaluate the expected measurement error, sensor mis-

alignment error, and measurement latency error. Misalignment is the error in determining the orientation

of one instrument frame with respect to another, and latency is the inability to correctly determine the

measurement time, specifically, the timing error between when the sensor took the measurement and its

associated time stamp. The simulations showed that a 2500 µs latency introduces an error standard devi-

ation of ∼3 cm. With a latency of 500 µs the error standard deviation is reduced to ∼0.5 cm. A sensor

misalignment of 5◦ introduces an error equal to 1% of the flight altitude AGL at a 5◦ off-nadir pointing

angle. For example, with a 5◦ pointing angle at 100 m AGL, a misalignment of 5◦ introduces a 1 m error.

Additionally, the simulations indicated that interpolating the GPS and IMU data to the laser measurement

times introduces a 0.1 mm error. In the best-case senario with dual frequency carrier dGPS and no latency

or misalignment, the simulations showed a total surface measurement error standard deviation of 3.5-5.5 cm

for 100-1000 m AGL flight altitude.

The simulation results indicated that the latency be kept to less than 500 µs and the alignment

be known to within 0.2◦ to achieve the desired performance. In practice, it was able to implement a

system architecture that limits the latency to <200 µs. Unfortunately, highly-accurate sensor alignment

was not achieved during the UAS integrations discussed herein, and is assumed to be ±1◦. As such, sensor

misalignment is expected to introduce a decent amount of error to the CULPIS elevation measurements.

The material presented in the following sections reviews the laser, IMU, and GPS measurement error
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in greater depth, and then focuses on assessing the operational performance of the CULPIS. Considerable

emphasis is placed on evaluating the kinematic dGPS positioning error at the high latitudes of the deployment

locations and as baselines increases to large distances on the order of 500 km, and greater. This is an

appropriate follow-on study to those carried out by Edwards as he characterized the static dGPS performance

in Boulder, CO for baselines less than 500 km.

5.3 Sensor Error Analysis

5.3.1 Laser Error

A fraction of the CULPIS measurement error can be attributed to the intrinsic error of the ULS laser.

The manufacturer indicates a range error of ±2 cm, and although it is not specifically indicated, this likely

represents the mean absolute accuracy. Edwards[25] tested the ULS measurement precision with a 500 Hz

pulse repetition frequency (PRF) and no sample averaging, and found that the measurement residuals were

bound to a range of ±6 cm with a standard deviation (precision) of 1.34 cm. Implementing a higher pulse

rate and averaging consecutive samples reduces the measurement noise, and as such, different ULS settings

are implemented for campaign operations than were tested by Edwards. Specifically, the PRF is set to 4000

Hz, 10 consecutive measurement pulses are averaged, and a minimum of 4 of these 10 pulses must return

valid range measurements. This provides an operational measurement rate of 400 Hz.

The full list of ULS settings used for campaign operations are provided in Table 5.2, and the mea-

surement noise affiliated with the operational settings are represented by Figure 5.3. The residual error is

bound to a range of ±5 cm and has a standard deviation (precision) of 0.6 cm. As shown by the residual

histogram, nearly all of the error is within ±2 cm, with only a few outliers beyond this range. Accordingly, 2

cm is taken to be the laser measurement error, which agrees with manufacturers specification. These results

illustrate the improved precision achieved by averaging consecutive samples.

Along with the discussion of laser ranging error, it is important to note that the aircraft flight altitude

and speed have a direct impact on the measurement spatial resolution. The laser footprint is proportional to

the measurement height AGL, and as such, it is possible to resolve smaller-scale features at lower altitudes.
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Table 5.2: The CULPIS ULS laser operational settings used during campaign deployment. All other settings
are left to their default value or unspecified/unchecked unless indicated below.

parameter setting
Units Meters
Short, Long, & Check Gate 2
Offset Distance 0
Laser Power Level High
Cooperative Target 2
Intensity Rejection Min=0, Max=6000
RS485 Termination 2�
Mode Averaging
PRF 4000 Hz
Pulses/Measure 10
Dithering 2
Minimum Good Pulses 4
Output Processing off
Output Setup Port RS232 Configuration Port
Continuous Autostart 2�
ULS Autostart 2�

Figure 5.3: The ULS laser range residual error has a standard deviation of 0.6 cm. These data were collected
using the operational settings specified in Table 5.2 at a range of ∼29 m from a static target during the ULS
interference testing described in Appendix F. The histogram indicates that nearly all of the residuals are
within ±2 cm, which is taken to be the measurement accuracy.
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For example, with the ULS beam divergence of 3 milliradian, the laser footprint diameter is 30 cm from 100

m AGL, and 60 cm from 200 m AGL, etc. Additionally, the laser measurement rate of 400 Hz is equivalent

to one measurement every 2.5 ms. Assuming a nominal ground speed of 30 m/s, the along-track separation

of the footprint center point is 7.5 cm. Substantial overlap exists between consecutive measurements, which

facilitates continuous sampling of the ground surface.

5.3.2 IMU Error

The IMU pointing angle measurement error, or angle determination error, can introduce a consid-

erable level of error to the CULPIS surface elevation measurements, especially at high flight altitudes and

at high attitude angles (roll and pitch). The surface height measurement error stemming from the IMU

angular determination uncertainty is described by Equation 5.3, which is dependent upon the laser range

(directly related to the aircraft altitude AGL), the true laser pointing angle off vertical, and the intrinsic

IMU measurement error. This equation is generalized for a single pointing angle off nadir and does not

decompose the angle into the roll and pitch components. Smith[107] performed dynamical testing of the

CULPIS IMU that indicated the angle determination error is ∼1◦ for typical UAS attitude rates of ∼2◦/s.

εL = L [cos (θ)− cos (θ + εθ)] (5.3)

where...

εL = height error from the intrinsic IMU error

L = laser range measurement

θ = laser true off-nadir pointing angle

εθ = IMU pointing angle determination error

The behavior of Equation 5.3 is shown graphically in Figure 5.4. Since this error is dependent on

three variables, it is presented as a function of IMU error and pointing angle at a constant range of 100 m

(Figure 5.4 top panel), and as a function of range and pointing angle for a constant IMU measurement

error of 1◦ (Figure 5.4 bottom panel). It is clear that the height errors are quite substantial (order meters)

for large ranges, pointing angles, and IMU angular errors. At a range of 100 m with an off-nadir pointing
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Figure 5.4: The CULPIS elevation error resulting from the intrinsic IMU angular measurement error as
described by Equation 5.3. The top plot shows the elevation error at a constant laser range of 100 m as a
function of the IMU measurement error and the pointing angle, and the bottom plot shows the elevation
error for a constant IMU measurement error of 1◦ as a function of the laser range and pointing angle.
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angle of 5◦ and an angular determination error of 1◦, the surface elevation measurement error is ∼17 cm.

The highest quality data is obtained at low altitude with near-nadir, well known pointing. For this reason,

surface elevation data collected while the UAS is performing a turning maneuver are assumed to be of poor

quality, and are not used for geophysical analysis.

Examples of roll and pitch measurements collected during CASIE flight 8 from three different IMUs

onboard the SIERRA UAS are shown in Figure 5.5. The C-Migits is a high-grade IMU with 10 Hz sampling

that was flown onboard the SIERRA, but was not flown onboard the Manta UAS during MUSCOX. The

Piccolo IMU is part of the Cloud Cap Piccolo autopilot that was utilized for both the SIERRA and Manta

UAS. The Piccolo IMU data are transmitted as part of the aircraft telemetry data stream, which occurs

once every three seconds via Iridium link. It is clear that the C-Migits and Piccolo IMUs depict very similar

aircraft attitude behavior. The 75 Hz Microstrain 3DM-GX1 shows dramatically different, sporadic behavior

with a long stabilization period following the large turns, and apparent cross-coupling of the roll and pitch

measurements. The source of these errors is unknown and should be investigated in the future. Based on

this analysis and additional visual inspection of the Microstrain IMU data not presented here, it was decided

that these data are not of sufficient quality for deriving surface elevations. As such, C-Migits IMU data

were used to derive CASIE surface elevations, and Piccolo IMU data were used to derive MUSCOX surface

elevations.

Figure 5.5 also shows that the aircraft flies with a continual rolling and pitching motion, which is likely

a result of the autopilot attempting to maintain constant airspeed. During straight and level flight, the roll

angle oscillates between ±3◦ and the pitch angle between 1−7◦. Data collected outside these bounds are not

used for geophysical analysis to limit the impact of the IMU angular determination error. The C-Migits FFT

shows that the dominant aircraft attitude motion has a periodicity of ∼200 meters/cycle, which corresponds

to a frequency of ∼0.15 Hz at 30 m/s flight speed. This is in excellent agreement with results presented

by Smith[107], who found that the Aerosonde UAS has a natural flight frequency of 0.16 Hz. With one

oscillation corresponding to 6◦ of angular rotation (e.g. ±3◦ of roll), the nominal angular rate is 0.9◦/s.

As a final note regarding the IMU measurements, it is important to recall that Smith[107] found the

Microstrain IMU yaw measurements to be less precise than those for roll and pitch. Although the Microstrain
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Figure 5.5: CASIE flight 8 example UAS roll and pitch attitude, and their spectral power, for Microstrain
3DM-GX1, C-Migit, and Piccolo IMU measurements. The C-Migits (10 Hz measurement rate) and Piccolo
(3-second measurement rate) observations agree quite well, whereas the Microstrain (75 Hz measurement
rate) observations have considerable error during and following turns. The C-Migits FFT spectra shows a
dominant aircraft attitude periodicity of ∼200 meters/cycle.
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IMU data were not used to derive surface elevations, it is assumed that the C-Migits and Piccolo yaw data are

also less precise than their roll and pitch data. Additionally, Edwards[25] showed the importance of highly-

accurate sensor alignment knowledge. Unfortunately, the sensor alignment was not accurately measured

during the CULPIS UAS integration, and as such, misalignment may contribute significantly to the derived

surface measurement error. For these two reasons, it was decided that the CULPIS GPS course over ground

(COG) data that are output from the Waypoint software would be used for the yaw/heading direction in the

elevation computation performed using Equation 5.1. Using the GPS COG direction will avoid imprecision

associated with the IMU yaw measurements, and will limit the impact of the IMU misalignment. However,

the COG direction describes the flight track direction, not the aircraft heading direction, and therefore, using

the COG direction ignores the aircraft crab angle (angle between the heading and track angles) that may

be associated with flight in a cross-wind.

5.3.3 GPS Error

The CULPIS GPS is used to determine the geographic position of the system during flight, and with

knowledge of the surface range from the laser and the aircraft attitude from the IMU, surface elevations are

computed using Equation 5.1, as previously discussed. A basic review of GPS fundamentals and mathe-

matical formulations are presented in Appendix I, and a general understanding of that material is assumed

throughout this discussion. As a brief overview, GPS computes positions in the WGS84 ellipsoid inertial

reference frame, and thus, the derived CULPIS elevation measurements are also relative to the ellipsoid.

While GPS offers an easy means for computing geographic position, its measurements are afflicted by or-

bit errors, receiver and satellite clock errors, atmospheric propagation errors as the GPS signals travels

through the ionosphere and troposphere, multipath error, and additional unmodeled error. If these errors

are unaccounted for they will reduce the accuracy and precision of the GPS position solutions.

Standard GPS (sGPS) positions are computed by tracking the course-acquisition (C/A) code trans-

mitted on the L1 (link 1) carrier frequency. The positioning resolution offered by sGPS code solutions is

relatively course, and improved performance can be achieved by tracking the carrier phase. The carrier

phase multipath errors are typically at centimeter level, whereas code multipath error is at meter level;
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however, the carrier phase measurements are ambiguous in whole cycles. This ambiguity must be resolved,

and is done so using a method known as kinematic ambiguity resolution (KAR). Furthermore, by tracking

the L1 and L2 (link 2) carrier phases it is possible to essentially eliminate the ionospheric error due to the

known dispersive propagation at these two frequencies. Differential GPS is a method for further reducing

atmospheric propagation errors. This method is based on the understanding that for receivers located within

close proximity to one another (i.e. tens to possibly hundreds of kilometers, or less) these errors are highly

correlated, and can be removed by differencing their time-matched measurements. However, as the baseline

distance increases between the receivers, the errors become uncorrelated and are not fully removed in the

differencing method. The magnitude of the remaining error is primarily dependent upon the difference in

atmospheric conditions along the signal path.

Airborne laser altimetry systems typically utilize relatively long-baseline L1/L2 dGPS to accurately

position the aircraft. During the CULPIS design phase the decision was made to use a L1-only GPS receiver

to reduce the costs from ∼$4000 to ∼$350. A fair amount of literature has been published discussing the long-

range performance of L1/L2 dGPS as utilized for airborne laser altimetry, and they have shown accuracies on

the order of 10-15 cm, with primary error contributions being multipath (∼2 cm), tropospheric propagation

(∼5 cm), and the reference station positioning error (∼4 cm) [17, 68, 70, 105, 130]. It is fairly well understood

that long-range L1 dGPS has relatively poor quality since the L1/L2 combination required for the ionospheric

correction cannot be made, and as such, there is minimal reporting of L1 dGPS vertical accuracy. For this

reason, and to characterize the practical CULPIS elevation measurement error, it is important to establish

the CULPIS L1 dGPS positioning capabilities for the operational scenarios encountered during MUSCOX

and CASIE (i.e. baseline distances of 50-500+ km, latitude >65◦ N).

The work done by Edwards[25] serves as a reference point for the GPS capabilities that can be expected

for the CULPIS system. As shown in Figure 5.2, long-baseline (e.g. ∼500 km) L1 dGPS nominally provides

vertical positioning accuracy and precision of &25 cm, or worse. The assessment presented in this section

is carried out, in part, to verify these expectations and to evaluate the operational kinematic L1 dGPS

positioning error as a function of the reference station baseline distance. Additionally, it was necessary to

evaluate the capabilities of the NovAtel Waypoint software which was utilized to perform the L1 dGPS
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positioning. It should be noted that the precise orbits and ephemerids were used for all processing.

To accomplish the task at hand, ground-based runway survey data were collected at the local airports

during the MUSCOX and CASIE deployments, and all the available permanent GPS stations within 1000

km are used to differentially position the runway survey data using NovAtel Waypoint 8.10 GrafNav. The

permanent GPS station data were acquired from the UNAVCO, Inc.2 geodetic GPS monument archive

at their native 30-second data rate. As will be discussed, local-baseline (i.e. close-range, <300 m) dGPS

positioning of the runway survey data is used to generate a “truth” reference surface, which is in turn used

to gauge the quality of the longer-baseline dGPS survey data. In this manner, it will be possible to quantify

the dGPS performance over a range of baseline distances, and subsequent analysis of flight-based laser profile

data collected over the runway will shed light on instrumentation and aircraft integration error sources for

the purpose of characterizing the practical CULPIS operational performance.

During the MUSCOX and CASIE deployments temporary GPS reference stations ILCU and NYCU

were established in close vicinity (<300 m) to the runways at Ilulissat, Greenland and Ny-Ålesund, Svalbard.

These stations were operated by CU personnel throughout the duration of the campaigns and were equipped

with dual-frequency Trimble R7 survey-grade receivers provided courtesy of UNAVCO. They were operated

with the same measurement rate as the CULPIS GPS receivers (5 Hz during MUSCOX, 10 Hz during

CASIE), and they serve as the local-baseline reference stations used to perform dGPS positioning of the

ground runway survey data used to generate the “truth” reference surface. Accurate knowledge of the

reference stations is critical in dGPS positioning because error in the reference station position translates

directly into error (bias) in the rover position. The method used to determine the precise position of the

temporary stations is described in Appendix H, and it is shown that these positions have a precision of <1

cm. The absolute accuracy is not known, but is assumed to be ∼2 cm, which is in line with the value cited

by Krabill et al.[70].

The long-distance monument GPS stations used to position the runway data are shown in Figure 5.6,

with the stations used for MUSCOX processing shown in green and the stations used for CASIE processing

shown in blue. These permanent stations record L1/L2 carrier data at a 30-second rate, and their positions

2 UNAVCO, Inc.: http://www.unavco.org/
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were computed using the Jet Propulsion Laboratory (JPL) online Automatic Precise Positioning Service3

(APPS) using several hours of data collected around the period of the runway surveys (4 hours of data for

MUSCOX stations, 6 hours of data for CASIE stations). The two temporary CU reference stations, ILCU

and NYCU, are shown in red. A full list of the reference stations, and their baseline distance relative to

ILCU and NYCU, that are used to evaluate the MUSCOX and CASIE runway survey GPS positioning is

provided in Table 5.3.

The Manta and SIERRA UAS were pulled back-and-forth along the runways at Ilulissat and Ny-

Ålesund in order to survey the surface elevation and generate the “truth” reference surface. The Manta was

towed with a cord by a person who walked across the runway two times (down-and-back), and the SIERRA

was placed on a trailer which was pulled by a truck back-and-forth across the runway four times (down-and-

back twice). The trailer height was measured with a ruler to be 53 cm, with an estimated uncertainty of ±2

cm. The two survey dates and times are provided in Table 5.4. During both surveys the CULPIS recorded

L1 GPS phase data (at 5 Hz during MUSCOX, and 10 Hz during CASIE), and dGPS post-processing was

performed using NovAtel Waypoint.

Due to the fact that the Waypoint software is proprietary and serves as a black-box processing tool,

it was necessary to determine the processing methodology and input parameters (primarily the a priori

covariance weights) that provide the most accurate and precise positions. To accomplish this, educated trial

and error dGPS processing was carried out on the MUSCOX runway survey data using ILCU and SRMP

as exploratory reference stations in a case-study analysis. The runway survey data were processed using

each reference station individually, and using both stations simultaneously. Additionally, the survey data

and station data were interpolated to various sampling times to investigate the dependence on measurement

cadence, and also the Waypoint a priori covariance weights were adjusted to determine the most suitable

values. Though the results of this study are not presented in detail, it was found that single-station dGPS

processing with the reference station measurements interpolated to the roving receiver sampling rate (5 Hz

for MUSCOX, 10 Hz for CASIE) provide the best results.

A similar investigation study was carried our using the CASIE runway survey data. The findings from

3 JPL Automatic Precise Positioning Service: http://apps.gdgps.net/index.php)
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Table 5.3: MUSCOX and CASIE differential GPS reference stations, and their baseline distances relative
to ILCU (for MUSCOX stations) and NYCU (for CASIE stations). ILCU and NYCU were located within
300 m of the local runways.

campaign station ID baseline distance [km]
ILCU 0.0

KAGA 49.4
QAAR 178.3
KELY 251.4
RINK 290.7
SRMP 426.5
UPVK 435.9
SUMM 590.3
HEL2 626.1

MUSCOX KULL 631.9
KSNB 697.1
TREO 697.7
PLPK 755.0
ASKY 761.4
HJOR 785.3
MIKI 803.3
TIMM 846.6
DKSG 864.2
MARG 997.9
NYCU 0.0
NYA1 0.3
NRSK 622.1

CASIE BLAS 719.4
GROK 753.1
LEFN 766.6
JGBL 839.6
KMJP 890.8

Table 5.4: The MUSCOX and CASIE runway ground-survey and flight-profile data collection times.

campaign ground survey date time period [UTC] duration [min]
MUSCOX 16 July 2008 21:55:02 - 22:17:52 22.8
CASIE 12 July 2009 07:56:08 - 08:06:39 10.5

campaign flight profile date time period [UTC] duration [hrs]
MUSCOX 9 July 2008 01:54:31 - 06:43:04 4.81
CASIE 14 July 2009 15:00:50 - 17:49:05 2.80
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Table 5.5: The a priori covariance weights used for NovAtel Waypoint differential processing of CULPIS
GPS data. For all processing the “distance effect” parameter was set to “low”, which adds an additional 0.8
parts-per-million (PPM) of the baseline distance to the weights.

tracking signal C/A Code [m] L1 Carrier [cm]
short-baseline (<1 km) 4.0 2
long-baseline (>1 km) 2.5 5

this study were similar to those for the MUSCOX study; however, dual-station dGPS processing using both

NYCU and NYA1 provided slightly more precise results that single-station processing with either NYCU or

NYA1 alone for the local-baseline positioning. As was found for MUSCOX, CASIE single-station processing

provided the most precise long-baseline dGPS positions. The short- and long-baseline covariance weights

that provided the most precise vertical elevations for the MUSCOX and CASIE runway survey data are

presented in Table 5.5.

The MUSCOX “truth” reference surface was computed in the following manner. First, Waypoint was

used to differentially position the runway survey data relative to the local station ILCU, and two meters of

data on either end of the runway survey were removed to eliminate data collected while turning in order

to minimize sampling of the runway lateral elevation change. Then, the GPS data were interpolated to

every 1 mm to mitigate velocity affects (data bunching) on the running mean. The running mean was then

computed using a 5 meter window size, and the GPS antenna height above the ground surface (34.3 cm as

mounted in the Manta UAS) was removed from the running mean to provide the final MUSCOX runway

reference surface.

The CASIE reference surface was computed in a similar manner except the data were positioned

relative to the local stations NYCU & NYA1 simultaneously, 50 meters of data were removed from either

end of the runway survey to eliminate the turns (the truck/trailer used to pull the SIERRA had a much

larger turning radius than the person walking the Manta), and a 10 meter window size was used to compute

the running mean. The trailer floor height above the runway surface (53 cm) and the GPS height above the

trailer floor (77.2 cm as mounted in the SIERRA) were removed from the running mean to provide the final

CASIE runway reference surface.

As previously mentioned, all the GPS stations shown in Figure 5.6 and Table 5.3 were used to differen-
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tially position the MUSCOX and CASIE runway survey data, but three of the survey datasets are examined

in particular detail (i.e. focus datasets) to illustrate the varying levels of performance. These three datasets

are the real-time C/A pseudorange sGPS solutions, the data positioned relative to the local-baseline reference

stations (ILCU for CASIE and dual-station NYCU & NYA1 for CASIE), and data positioned relative to se-

lect long-baseline monument sites (SRMP for MUSCOX, KMJP for CASIE). The SRMP station was chosen

because its 427 km baseline is roughly equal to the longest baseline encountered during CASIE (considerably

longer than those encountered during MUSCOX), and KMJP was chosen because its 891 km baseline is

representative of potential future UAS missions that could extend farther north into the Arctic Ocean.

Before examining the runway survey elevations, it is useful to evaluate a variety of GPS solution

metrics. These metrics provide insight to the position quality based on the satellite geometry and the

least-squares covariance matrix. Figure 5.7 shows GPS metrics reported by the Waypoint software for the

MUSCOX and CASIE local-baseline (ILCU, NYCU & NYA1) dGPS solutions, and the two select long-

baseline (SRMP, KMJP) dGPS solutions. The metrics are not available for the sGPS positions that are

recorded in real-time by the CULPIS GPS receiver. Waypoint processes data in the forward and reverse time

directions separately, and then uses a variance-weighted combination of the forward and reverse solutions to

form the final position solution. The separation distances plotted at the top of Figure 5.7 are the differences

between the forward and reverse solutions, and provide an overall estimate of the solution accuracy. The

second row of plots shows the drift of the L1 KAR float solution, which indicates the degree to which the

software was able to resolve and maintain lock on the carrier phase. The L1 RMS and standard deviations,

shown in the bottom two plots, are derived from the covariance matrix, as shown on page 165.

Other than the vertical component of the KMJP solution, the separations between the forward and

reverse solutions are not dramatically different for the short- and long-distance dGPS positioning. However,

the long-distance (SRMP, KMJP) ambiguity drift, L1 RMS, and covariance standard deviations are con-

siderably higher than those for the short-distance baselines (ILCU, NYCU & NYA1). This suggests that

the increased differences in the ionospheric and atmospheric conditions along the signal transmission path

between the long baselines introduces increased propagation error, rendering it more difficult to resolve the

carrier ambiguity and increasing the overall position error. The ambiguity drift introduces approximately 1-4
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Table 5.6: MUSCOX and CASIE GPS runway survey elevation error statistics relative to the “truth”
reference surface. The ILCU and NYCU & NYA1 statistics represent the quality of short-baseline dGPS
positioning solutions, SRMP and KMJP represent long-baseline solutions, and sGPS represents the real-time
pseudorange code solutions. The nugget is the variogram standard deviation value at a lag of 1 second, and
the sill is the maximum variogram standard deviation value at time lags less than 15 minutes. See Equation
5.5 for the variogram formulation.

mean stdev RMS nugget, γ1-sec sill, γ15-min

campaign station [cm] [cm] [cm] [cm] [cm]
ILCU 0.0 1.7 1.7 0.4 2.6

MUSCOX SRMP -15.1 35.9 39.0 0.9 48.7
sGPS 0.7 103.9 103.8 0.9 143.8

NYCU & NYA1 0.1 5.4 5.4 0.7 7.3
CASIE KMJP 103.8 66.1 123.1 3.8 120.7

sGPS 326.3 107.6 343.6 2.1 176.8

cm of error to the long-baseline dGPS solution, and the covariance standard deviation indicates an overall

vertical precision of approximately 40-70 cm.

The number of visible satellites and the dilution of precision (DOP) parameters are shown in Figure

J.2 on page 168, and are essentially the same for all the reference stations. In general, there is a high number

of visible satellites, which is favorable for a quality solution. However, the low-horizon geometry of the

satellites is not favorable for a high-quality vertical solution, as made evident by the relatively high VDOP

and position DOP (PDOP) values. It is also evident that the solutions are poorest toward the beginning and

end of the time series where the KAR algorithm, as run in the forward and reverse directions, is initializing

and waiting for satellite lock and a sufficient change in satellite geometry to be able to resolve the carrier

ambiguity.

The MUSCOX and CASIE runway survey elevation profiles for the three focus datasets (sGPS, local-

baseline dGPS, and long-baseline dGPS) are shown in Figure 5.8, along with their difference error relative

to the “truth” reference surface. The runway surfaces are relatively smooth such that the vertical variability

in the survey data represents imprecision in the solutions. The mean, standard deviation, and RMS error

statistics for the focus datasets are provided in Table 5.6. The runway survey error statistics, presented as

a function of baseline distance for all the reference station position solutions, are shown in Figure 5.10, and

generally do not show a strong correlation with distance.

For clarification, it is important to note that that the RMS error discussed here, and throughout this
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document, is computed using Equation 5.4. In this computation, the mean error bias is not removed from

the observed data, and as such, the RMS incorporates both the bias and standard deviation of the error. In

this manner, if the observation are unbiased, the RMS is equal to the standard deviation.

RMS =

√∑n
i=1 (x1,i − x2,i)2

n
(5.4)

where...

RMS = root-mean-square error

x1,i = observed data

x2,i = “truth” reference data

n = number of data points

As expected, local-baseline dGPS processing provides the most precise overall runway survey position

solutions, with RMS errors of 1.7 cm and 5.4 cm for MUSCOX and CASIE, respectively. This finding

confirms that it was indeed appropriate to compute the “truth” reference surfaces from these data. It is also

clear that the sGPS solutions provide the least precise overall positions, with MUSCOX and CASIE RMS

errors of approximately 1.04 m and 3.44 m. The long-baseline dGPS solutions (SRMP and KMJP) provide

intermediate overall precisions, with RMS errors of 39.0 cm and 1.24 m. It is important to note that some of

the variability within and between the dGPS runway survey transect data is introduced by lateral changes in

the location of the Manta and SIERRA as they were towed back-and-forth along the runway. It is expected

that there is decimeter-level lateral variability in the runway surfaces (verified by visual inspection of the

runways during the MUSCOX and CASIE deployments). Additionally, it is likely that elevation variability

was introduced by the vertical vibration of the UAS as they were pulled along the runway.

It is important to recognize that the error mean, standard deviation, and RMS of the entire runway

survey dataset presented in Table 5.6, represent the accuracy and precision (relative to the “truth” survey)

of the CULPIS GPS measurements over the full time period of the surveys (∼22 minutes for MUSCOX,

∼10 minutes for CASIE). An important performance metric that is particularly relevant to sea ice topogra-

phy measurements is the relative point-to-point measurement precision over shorter time periods, which is
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relevant for computing ice surface roughness and ridging characteristics.

Geostatistical analysis methods can be implemented to assess the spatial behavior of a geophysical

variable. As discussed in Herzfeld[38], the underlying concept of geostatistics is that of the regionalized

variable. A regionalized variable is a spatial or temporal variable, such as surface elevation or GPS position,

with a transitional behavior between deterministic and random states. In general, regionalized variables

are deterministic (i.e. predictable) over shorter time or space scales, and transition to a more random (i.e.

unpredictable) state or behavior at longer scales. Taking the example of surface elevation, the elevation at

two points that are located close to each other are likely to have a similar elevation. As one moves farther

away from a point with a measured elevation, one is less likely able to predict the elevation that will be

measured at another site, until a distance is reached beyond which prediction from the first measurement

site is no longer possible. This distance is known as the range.

It is important to recognize that while surface elevation, and other geophysical variables, share the

general transitional behavior of regionalized variables, their spatial or temporal properties are different and

dependent on the specific nature of the variables. For instance, in a mountain range, topography varies over

short distances (hundreds of meters to kilometers), whereas the gravity field only changes over much larger

distances (tens of kilometers). As such, topography (elevation) generally has a smaller range than gravity

(gravity anomaly) [38]. In the case of GPS position, the temporal behavior is dependent primarily on the

changing satellite constellation geometry and the signal propagation environment.

In geostatistical analysis, a variogram reflects the behavior of a geophysical variable which is spatially

correlated at a certain space or time scale and which is not correlated for large distances (i.e. beyond the

range). In other words, variograms show the variability, or decorrelation, of data as a function of distance

or time lag. Variograms can be characterized by the parameters sill, range, and nugget [38]. The sill

corresponds to the total variance of the dataset. The nugget is the residual variance of repeated sampling in

the same location, or of samples spaced closer than the resolution of the data. As mentioned, the concept of

a regionalized variable involves the notion that samples spaced closer together are related more than samples

spaced farther apart, which results in a variogram with low values for short scales, and values increasing to

the sill value, which is indicative of the random nature of the variable, for samples exceeding a certain scale.
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This scale is termed the range. Beyond the range the regionalized variable behaves like a random variable.

Herzfeld[39] has done extensive geophysical morphology analysis and classification using variograms as

a means to extract information on complex spatial variability signatures. Applications of variograms are wide

ranging, but have proven useful in topics such as mapping of marine-geologic provinces from bathymetric

data (e.g. [35, 40, 43]), characterization of sea ice and snow surface properties (e.g. [36, 37, 45, 46]), and the

analysis of glacial deformation (e.g. [41, 42, 44]). For the purposes herein, variograms are used to evaluate

the GPS and CULPIS error variability and magnitude as a function of lag.

It is intuitive to think of the kinematic GPS error as a regionalized variable that transitions from

deterministic behavior at short time scales to a random behavior at longer time scales based on the changing

satellite geometry and signal propagation conditions. The error variogram will essentially show the short-

lag, point-to-point error (i.e. high-frequency noise), how rapidly the error grows, and the maximum error of

the GPS solutions. The longer-scale random behavior of GPS solutions is well recognized and is attributed

primarily to changes in the atmospheric propagation and multipath error, which slowly vary with changes

in satellite geometry (e.g. [3, 9, 33, 90, 110]). Over short periods of time the GPS positions are relatively

precise. Over longer time periods, or lags, the satellite geometry changes significantly, the error grows, and

the positions become more uncorrelated. The error variograms are a method for examining the error growth

and the associated position solution decorrelation.

The variogram (variability as a function of time lag), is computed using Equation 5.5 [39]. In practice,

a lag bin size, h, is specified along with a bin tolerance. For the variograms computed in this section, a bin

size of 1 second with a tolerance of ±0.5 seconds about bin center was used to evaluate the GPS point-to-point

precision. The choice of a 1-second bin size was driven by the fact that the sGPS data has a measurement

rate of 1 Hz, so it is not possible to use a smaller bin size. Runway survey elevation error variograms for

L1 dGPS positions relative to the ILCU, SRMP, NYCU & NYA1, and KMJP reference stations, and the

sGPS pseudorange positions are shown in Figure 5.9. Even with the prescribed bin size, aliasing artifacts

are evident in the sGPS variograms. The runway survey elevation error variograms for GPS data positioned
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relative to all the reference stations are shown in Figure J.3 on page 169.

γ2(h) =
1

2 |N(h)|
∑

(i,j)∈N(h)

[z(xi)− z(xj)]2 (5.5)

where...

x = time or location

h = time or distance lag = |xi − xj |

z = surface elevation error relative to the “truth” reference

γ2 = elevation error variance over the time or distance lag h

γ = elevation error standard deviation over the time or distance lag h

N(h) = the set of pairs of observations i, j

|N(h)| = number of i, j pairs in the set N(h)

A number of variogram characteristics are useful for assessing the vertical GPS positioning precision

and the error behavior. The variogram value in the first lag bin, referred to here as the nugget, represents the

error that can be expected over the short time (distance) period of 1 second (30 m when flying at 30 m/s),

which essentially represents the point-to-point, high-frequency measurement precision. The variogram slope

and curvature at short lags illustrates how quickly the error grows, and the peak variogram value, referred to

as the sill, indicates the expected error over a longer time (distance) lag. The variogram nugget (variogram

value at 1-second lag), and the variogram sill (maximum variogram value for lags less than 15-minutes) are

presented in Table 5.6.

It is important to note that this GPS elevation error variogram analysis is inherently limited by the

time period of the runway surveys (presented in Table 5.4). As such, the sill values presented here are only

representative of the total GPS error variability over the relatively short time period of the runway surveys.

It is recognized that the GPS satellite geometry and atmospheric conditions vary over much longer scales

(i.e. days and longer), and therefore the GPS elevation error sill values for datasets collected over a longer

time period would likely be larger than those presented here. Furthermore, repeat GPS measurements were

not made at the exact same locations along the runway, and therefore the variogram nugget could not be
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computed according to its true definition (the residual variance of repeated sampling in the same location,

or of samples spaced closer than the resolution of the data). The variogram value within the first lag bin

(1-second lag) is taken to be a close approximation of the nugget.

For both the MUSCOX and CASIE runway surveys, the sGPS positions generally exhibit the most

rapid error growth (although the KMJP growth-rate is faster at times <0.1 minute), and the highest overall

error, as indicated by the large standard deviation, RMS, and sill values. The short-baseline dGPS solutions

provide the best positioning with the smallest error mean, standard deviation, RMS, nugget, sill, and slowest

error growth. It is insightful to note that the long-baseline dGPS positions exhibit considerably less error

than sGPS positions at time lags greater than 0.4 minutes (720 m at 30 m/s). One interesting finding is that

the variogram nugget shows a strong correlation with baseline distance, as shown by Figure 5.11; however,

the overall error statistics (mean, stdev, rms, sill) are weakly correlated with distance (see Figure 5.10).

Based on the anomalous behavior exhibited by MUSCOX data positioned relative to KAGA in Figure

5.11, it was determined that the KAGA station was not reliable. As such, the closest reference station

examined (other than the very short ILCU, NYCU, and NYA1 stations) is QAAR, which falls just shy of

200 km from the MUSCOX runway. It is evident from Figures 5.10 and 5.11 that for CULPIS L1 dGPS

positioning at high latitudes, beyond a baseline of 200 km the overall vertical position error is not significantly

influenced by increasing the distance further. However, the point-to-point error noise continues to increase

with baseline distance. In other words, once the baseline exceeds ∼200 km, the GPS overall accuracy has

reached it’s maximum error (i.e. an error “saturation point”), yet the point-to-point measurement precision

continues to degrade as the baseline increases.

It appears that for baselines >200 km, the total atmospheric propagation delay between the two GPS

receiver locations has essentially reached a peak value and has leveled-off, but increasing baselines continue

to afflict the carrier phase, making it increasingly difficult for the KAR algorithm to maintain a stable fix on

the phase, thereby introducing high-frequency noise. This phenomenon is supported by work that has shown

that the tropospheric and ionospheric propagation error decorrelation scales are in the range of 50-200 km

(e.g. [78, 110]). More specifically, Stoew and Elgered[110] found that for spatial scales smaller than 200 km

the zenith tropospheric delay error correlations become significant, and for larger scales the error correlations
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Figure 5.10: MUSCOX and CASIE runway survey elevation error statistics for sGPS and dGPS positioning
relative to the reference stations shown in Figure 5.6 and Table 5.3. The colors correspond to the reference
station legend in Figure 5.11. The sill is the maximum variogram value at time lags less than 15 minutes.
There is not a strong correlation between baseline distance and any of the statistics presented here.

Figure 5.11: MUSCOX and CASIE GPS runway survey elevation error variogram nugget v. baseline distance.
This plot shows the point-to-point decorrelation of dGPS position solutions as a function of baseline distance.
Equations for the linear and polynomial best fit curves, along with the associated R2 value, are shown in
their corresponding colors.
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are small and slowly decreasing with distance. A plot taken from their paper is shown as Figure J.1 on page

J.1, and illustrates the ∼200 km tropospheric delay decorrelation scale. Additionally, Lee et al.[78] show

that ionospheric delay increases drastically for scales (i.e. spatial separation distances) up to ∼50 km, and

then continues to slowly increase.

Again, it is important to recognize that the mean error corresponds to error in the absolute position

accuracy, whereas the error standard deviation correspond to relative position precision. As such, positions

with a high mean error will not provide reliable absolute elevations, as desirable for total ice mass compu-

tations. However, precise positions, with a low point-to-point relative error, are useful for ice topography

computations even if they have poor accuracy.

5.3.4 Alignment and Offset Error

It is important to recall that the computation of surface elevation using Equation 5.1 represents the

idealized case where all the sensor reference frames are collocated and aligned with the vehicle body frame.

In practice, when the sensors are integrated into the UAS, there are three-dimensional (3D) lever-arm offsets

and pointing misalignments between all the reference frames. Other than the vertical offset between the

GPS antenna and the laser sensor face, the lever-arms and alignments between the other sensor frames were

not accurately measured during the CULPIS UAS integrations. In a static environment, the offsets and

misalignments will introduce a constant error bias to the derived surface measurements; however, this error

will continually change with the dynamics of aircraft flight, thereby introducing variable error to the elevation

measurements. For example, a horizontal offset between the GPS antenna and the laser will translate into

the vertical dimension as the aircraft attitude changes.

The magnitude of the vertical error introduced by the horizontal offset between the GPS antenna and

laser is described by Equation 5.6. The error magnitude is dependent upon the horizontal offset distance

and the aircraft off-horizontal attitude angle, and the nature of this error is illustrated by Figure 5.12. The

horizontal offset between the antenna and laser is constrained by the size of the UAS and the relative location

of those two sensors on the aircraft. For both the Manta and SIERRA integrations, these two sensors were

located in close proximity, with a horizontal separation assumed to be less than 20 cm. Given a 20 cm offset



www.manaraa.com

74

Figure 5.12: The CULPIS profile elevation error resulting from the horizontal lever-arm offset between the
GPS antenna and the laser sensor head. This assumes that the GPS antenna is located at the aircraft center
of mass (i.e. the rotation center). As the aircraft attitude deviates from horizontal, the relative vertical
offset between the laser and GPS antenna will change, thereby introducing error into the derived elevation
profile data. This error is described by Equation 5.3.

and a 5◦ off-horizontal attitude angle, the vertical error is ∼2 cm. This assumes that the GPS antenna is

located at the aircraft center of rotation (i.e. center of mass). Deviation from the center of rotation will

introduce additional error not modeled by Equation 5.6.

εO = x · sin (θ) (5.6)

where...

εO = height error due to the GPS antenna and laser horizontal offset

x = horizontal distance offset between the GPS antenna and laser

θ = aircraft off-horizontal attitude angle

In addition to the lever-arm offset error, misalignment between the IMU, laser, and aircraft body

frames will also introduce error. The angular misalignment can be thought of as contributing to the IMU

angle determination error. In other words, the sensor frame misalignment is synonymous with inaccuracies

in the IMU angular measurements, and is therefore described by Equation 5.3. A moderate amount of care

was taken to align the sensor reference frames during the CULPIS UAS integrations, and it is assumed that

they are within ±1◦ of each other. This degree of misalignment will introduce a ∼17 cm vertical error for
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data collected at an off-nadir attitude angle of 5◦ from 100 m AGL.

It is recognized that the unknown lever-arm offsets and misalignments between the sensor frames

introduce error into the CULPIS surface elevation measurements. In order to improve the CULPIS eleva-

tion accuracy, future effort should be placed on measuring the offsets and alignments, and enhancing the

mathematics of Equation 5.1 to account for them appropriately.

5.4 Operational System Error Analysis

5.4.1 Runway Profiling Error

Section 5.3.3 focused on assessing the CULPIS GPS vertical positioning capabilities by performing

ground-based surveys of the runways at Ilulissat and Ny-Ålesund and examining the dGPS solution quality

for a range of baselines. This section, and the two that follow, focus on assessing the fully-integrated

CULPIS system performance by examining elevation data collected in-flight during the MUSCOX and CASIE

campaigns. One of the very first operational tests that was carried out was to fly over a van that was parked

in the middle of the Ilulissat runway during MUSCOX and simply verify that the van profile could be

identified in the CULPIS surface height data. The results of this test are illustrated in Figure K.1 on page

171, and show that it was indeed possible to identify the van’s signature.

To assess the in-flight operational performance in a more quantitative sense, the “truth” reference

surfaces were repeatedly overflown by the Manta and SIERRA UAS and profiled with the CULPIS during

the MUSCOX and CASIE deployments. The runway profiling flight dates and times are listed in Table 5.4

on page 60. The CULPIS surface elevation measurements collected during these overpasses are compared

to the “truth” runway survey to gauge the quality of the flight data. This analysis is focused on evaluating

the vertical accuracy of the CULPIS topography data by quantifying the error between the flight-based

runway elevation profiles and the ground-based “truth” runway survey. As previously mentioned, collecting

measurements over a surveyed reference surface to assess the quality of flight-based measurements is a fairly

standard method which has been exercised for both the NASA and the Technical University of Denmark

airborne laser altimeter systems (e.g. [68, 131]), among others.
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The MUSCOX and CASIE runway overflight ground tracks are shown in Figure 5.13, along with

the profile data used to assess the CULPIS performance, the local GPS reference stations, and the truth

runway surveys. As discussed in Section 5.3.2, the CULPIS Microstrain IMU data were determined to

be of poor-quality data; however, 1 Hz aircraft attitude measurements were collected by the Manta and

SIERRA Piccolo autopilots during these line-of-sight flights. Due to the proprietary nature of this system,

the exact capabilities of its IMU are not known, but it is a microelectromechanical sensor (MEMS) with

3-axis gyroscopes and accelerometers functional up to 300◦/s . The Piccolo and CULPIS IMU specifications

are comparable, but the CULPIS IMU samples at 100 Hz whereas the Piccolo provides 1 Hz measurements.

The slower measurement rate will will introduce minor interpolation errors into the elevation data. The

SIERRA C-Migits IMU was not functional during the runway overflights.

The CULPIS laser and GPS data, and the Piccolo IMU data are used in Equation 5.1 to compute the

ENV coordinates of the laser footprint measurement locations in the WGS84 ellipsoid. As was done with the

ground-based runway survey analysis, sGPS and short- and long-distance baseline dGPS data were used to

generate three sets of runway profile data to highlight the GPS positioning effects on the derived elevation

data. The GPS positioning parameters as reported by the Waypoint software are presented in Figure K.2

on page 172. In general, they show similar performance as found for the runway survey data presented in

Figure 5.7 on page 63; however, there appear to be several loss-of-lock incidents where lock on the carrier

phase is lost and then gradually recovered. This occurrence leads to intermittent periods of poor positioning.

To facilitate a comparison between the in-flight runway profile data and the “truth” runway survey

data, the CULPIS elevations were filtered to retain quality data in close vicinity to the reference survey. Data

collected with the aircraft roll ranging between -3◦ and +3◦, pitch between +1◦ and +7◦, and footprints

within 3 m horizontally of the reference surveys were deemed “quality” runway profile data suitable for

comparison with the reference surveys. Both the Manta and SIERRA UAS nominally fly with a slight

upward pitch angle, which accounts for the skew in the chosen pitch range. The runway profile data were

then divided into two different groups, data collected at altitudes below 200 m AGL, and data collected at

altitudes greater than 200 m AGL but less than 400 m AGL. This division of the data will highlight the

impact of altitude on the IMU pointing error and the resulting elevation measurement quality. Throughout
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this comparison it is important to recognize that the laser measurements are not exactly spatially coincident

with the truth runway survey measurements, and as such, there will be some disagreement between these

two due to lateral variations in the runway surface topography not captured by the ground-based runway

survey.

The three sets of runway profiles derived from data collected below 200 m AGL, along with the truth

runway survey, are shown in the top plots of Figure 5.14. The difference error between the profile data and

the truth survey is shown in the bottom plots, along with the error mean (µ), standard deviation (σ), and

RMS. The elevation error is the difference between a profile measurement and the“truth” reference height

at the same location (i.e. same easting). The overall accuracy throughout the flight period is described by

the error mean (µ), and the overall precision (spread) is described by the error standard deviation (σ). The

RMS error is a single metric which encapsulates both the mean and standard deviation.

The measurement error statistics for data collected below and above 200 m AGL are presented in Table

5.7. It is evident that, as expected, both the MUSCOX and CASIE sGPS data have the least agreement

with the reference surveys, and the two dGPS datasets have considerably better agreement. The sGPS

data describes the worst case scenario where dGPS processing is not possible, and thus, represents the upper

bound for CULPIS surface height measurement quality. Furthermore, the data collected at altitudes <200 m

AGL is more accurate and precise than data collected at higher altitude. The low-altitude, short-baseline

dGPS measurements have an accuracy (mean error) within 3 cm and a precision (error standard deviation) of

less than 20 cm. These values increase somewhat dramatically to an accuracy within 55 cm and precision of

less than 40 cm for the high-altitude data. The long-baseline data shows accuracies between approximately

60-80 cm, with precisions between 25-45 cm for low-altitude data, and 50-80 cm precisions for high-altitudes.

The sGPS data have accuracies of 50-200 cm and precisions of 150-260 cm.

As previously mentioned, the error mean, standard deviation, and RMS statistics of the full runway

profile dataset, as reported in Table 5.7, describe the CULPIS performance over the full period of the profile

flights, capturing both the short and long time-scale variability within this period. For applications such as

measuring sea ice freeboard (using local water surface tie-points) and roughness characteristics, knowledge of

the absolute ice surface elevation is not critically important. Rather, the ice elevations within small isolated
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Table 5.7: MUSCOX and CASIE runway profile elevation error statistics relative to the “truth” reference
survey for CULPIS data collected below 200 m AGL, and data collected above 200 m AGL but below 400 m
AGL. The ILCU and NYCU & NYA1 statistics represent the quality of profiles generated using short-baseline
dGPS positioning solutions, SRMP and KMJP represent profiles generated using long-baseline solutions, and
sGPS represents profiles generated using the real-time pseudorange code solutions.

reference mean [cm] st. dev. [cm] RMS [cm]

campaign station (<200 m) (>200 m) (<200 m) (>200 m) (<200 m) (>200 m)
ILCU -1.0 -28.5 18.1 37.7 18.1 47.2

MUSCOX SRMP 59.4 -1.5 26.8 77.8 65.1 77.9
sGPS 196.7 177.4 148.9 257.0 246.7 312.3

NYCU/A1 -3.0 -54.6 6.5 24.9 7.1 60.0
CASIE KMJP -76.6 -81.0 44.1 49.5 88.4 94.9

sGPS -46.2 68.9 130.8 210.6 138.7 221.6

regions can be computed and compared in a relative sense to one another. For example, surface roughness

can be described by the elevation standard deviation over a given distance. If this distance scale is chosen

to be 1 km, one can compute the surface standard deviation over 1 km regions, and compare the relative

variability amongst these regions without knowledge of the absolute heights. Given this logic, it is important

to identify the scale at which low-frequency, high-amplitude GPS variability does not dramatically affect the

surface measurements.

As was done in Section 5.3.3, the measurement variability over a range of time/space scales can be

described by the error variogram (Equation 5.5). To assess the in-flight operational performance of the

CULPIS measurements over a range of scales, a single, representative runway overpass was identified, and

its error variogram was computed. The single runway profile elevation errors are shown in Figure 5.15, and

the error variograms are shown in Figure 5.16.

Due to the relatively short runway length, the variograms only extend to a maximum lag of approxi-

mately 100 m. However, within this distance the error quickly grows and levels-off at a sill value of ∼30 cm

for the MUSCOX data, and ∼5 cm for the CASIE data at a lag near 50 m (3 seconds when flying at 30 m/s).

As shown by Figure 5.9 in the previous section, the GPS error variability at a lag of 3 seconds is less than

2 cm. As such, the error variogram sill presented here in Figure 5.16, represents the CULPIS measurement

error, excluding GPS errors, which arises primarily from aircraft attitude and altitude impact on IMU inac-

curacies and sensor misalignments, the unknown lever-arm offset errors, the laser residual noise, and errors



www.manaraa.com

81

Figure 5.15: MUSCOX and CASIE single runway overpass elevation error relative to the “truth” reference
survey. The sGPS profiles, shown in blue, were generated using the pseudorange code solutions computed
in real-time by the CULPIS GPS receiver. The profiles shown in green were generated using long-baseline
dGPS post-processing solutions, and profiles shown in black were generated using short-baseline dGPS post-
processing solutions. The MUSCOX data were collected at an altitude of ∼155 m AGL and the CASIE data
were collected at an altitude of ∼70 m AGL.

Figure 5.16: MUSCOX and CASIE single runway overpass elevation profiling error variograms as a function
of distance. The sGPS variograms, shown in blue, depict the error variability of profiles generated using
the pseudorange code solutions. The variograms shown in green depict the error variability of profiles
generated using long-baseline dGPS post-processing solutions, and variograms shown in black depict the
error variability of profiles generated using short-baseline dGPS post-processing solutions. The top x-axis
shows the equivalent time lag assuming a nominal flight speed of 30 m/s. The nugget is chosen to be the
variogram value at a lag of 1 meter, and is presented for each processing method in the corresponding color.
These variograms are derived from the profiles presented in Figure 5.15.
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associated with interpolating the GPS (5 Hz MUSCOX, 10 Hz CASIE) and IMU (1 Hz) data to the laser

sample times (400 Hz). This is supported by the fact that all three profile variograms computed using the

different GPS positioning methods exhibit similar behavior, which suggests these data are independent of

GPS errors over the short distance scale of 100 m.

The cause of the dramatically higher variogram values for the MUSCOX data, as compared to the

CASIE data, is somewhat unknown, but potentially stems from a combination of sources. First of all, the

CULPIS software that was used during MUSCOX to read and record the instrument data contained flaws that

resulted in considerable amounts of data being sporadically “lost” (i.e. not recorded) throughout the entire

campaign. Because of this, the MUSCOX data contains intermittent gaps, which lead to increased errors

in the interpolated GPS and IMU data. This flaw was corrected prior to the CASIE mission. Additionally,

the smaller size of the Manta UAS, as compared to the SIERRA UAS, may lead to more unstable flight

characteristics with increased attitude motion. The effect of aircraft attitude and IMU inaccuracies is

discussed below, along with an investigation of the UAS attitude variability.

To investigate the Manta and SIERRA flight characteristics, 15 minutes of roll and pitch measurements

collected during the runway profile flights are examined to evaluate the attitude variability. The roll and

pitch time series and corresponding fast Fourier transform (FFT) spectral power are presented in Figure

5.17. The wind speed and variability statistics presented in Table 5.8 suggest similar conditions during

the two flights; however, the spectral signatures are quite different. The CASIE roll spectrum shows two

distinct peaks at approximately 10 and 40 seconds/cycle, whereas the MUSCOX roll spectrum shows peak

near 20 seconds/cycle, and a peak centered near 70 seconds/cycle. The smaller size of the CASIE runway

and available flight space lead to smaller-radius flight tracks with tighter turns, thereby resulting in lower-

periodicity (higher frequency) spectral characteristics. As shown in Table 5.8, the total roll power is nearly

the same for both campaigns. The nearly equivalent total roll power suggest similar overall roll behavior.

The pitch spectral characteristics are fairly dissimilar for the two campaigns, with CASIE showing

a more well defined periodicity peaking near 15 seconds/cycle, whereas the MUSCOX spectral power is

more uniformly distributed over higher period (lower frequency) cycles. These long period cycles are likely

associated with a consistent up-and-down pitching of the Manta UAS, a flight characteristic which is evident
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Table 5.8: The UAS roll and pitch FFT total spectral power and wind conditions for a subset of the MUSCOX
and CASIE runway profiling flights. These values are associated with data presented in Figure 5.17.

parameter MUSCOX CASIE
roll total spectral power 207.9 230.1
pitch total spectral power 103.0 56.9
wind speed mean (m/s) 3.8 3.2
wind speed stdev (m/s) 1.6 1.6

Figure 5.17: The UAS roll and pitch, and corresponding FFT spectra, for a subset of the MUSCOX and
CASIE runway profiling flights. The total spectral power and wind speed means and standard deviations
associated with these data are presented in Table 5.8.
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in the CULPIS video data (data not presented here). The pitch total spectral power is almost twice as

high for the MUSCOX campaign, which suggests that the Manta flies with higher attitude variability. As

presented in Figure 5.4, larger attitude angles combined with IMU uncertainty lead to increased measurement

error, as evident in the MUSCOX data.

5.4.2 Ice Sheet Crossover Error

As an additional investigation to the operational performance of the CULPIS elevation measurements,

a crossover point analysis was carried out using data collected within the MUSCOX study region to assess

the consistency of repeat surface observations. Crossover data are defined as data collected at intersecting

transects within 5 m of each other. The data within the 5 m radius of the intersection point are averaged

together to provide a mean surface elevation at the crossover point for each intersecting transect. The radius

of 5 meters was chosen to smooth out small scale surface variability and measurement error to achieve a

measurement representative of the crossover point surface elevation. A total of 271 intersection points were

identified and are shown in the top panel of Figure 5.18. The histogram of differences between the transect

crossover elevations is shown in the bottom panel of Figure 5.18, along with the difference mean, standard

deviation, and RMS error.

The difference histogram somewhat resembles a normal distribution with an error mean of 40.3 cm, a

standard deviation of 128.1 cm, and an RMS of 134.1 cm. These data were collected over a 6 day period in

late July. During this period it is expected that the ice surface may have melted and or moved to some extent;

however, this change is likely negligible relative to the CULPIS measurement difference error found during

this time. These data were collected at relatively high altitude above the surface (>200 m AGL), and as

such the IMU measurement uncertainty and sensor misalignments are magnified. Additionally, relatively long

time periods between repeat overpasses (on the order of hours to days) implies that these errors encapsulate

both the lower-frequency GPS positioning variability and higher-frequency instrument and aircraft attitude

error variability. Furthermore, the overall performance of the CULPIS was compromised during MUSCOX

due to the software architecture which led to considerable amounts of lost data.
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Figure 5.18: The top panel shows the MUSCOX ground tracks within the study region and the crossover
locations. The bottom panel shows the difference error histogram for surface elevations collected at the
crossover locations, along with the error mean, µ, standard deviation, σ, and RMS statistics.
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5.4.3 Sea Ice Profiling Error

Up to this point the error analysis has focused primarily on relatively short segments of GPS and

CULPIS altimetric data collected over the runways at Ilulissat and Ny-Ålesund, and the MUSCOX crossover

error analysis characterized the system performance in 2008 over the Greenland ice sheet; however, the

full elevation profiles collected during this campaign were not thoroughly examined. In order to better

evaluate the long-term CULPIS systematic performance, the CASIE flight 9 data are examined in more

detail. Preliminary investigation of the flight 9 data showed several relatively large elevation discontinuities

where the surface height varied over a wide range during a short period of time. This variability was beyond

that expected for sea ice topography, which provided motivation for further investigation into the source

of this anomalous elevation data. It was found that the GPS covariance height standard deviation was

dramatically elevated during these times. The exact cause of this is unknown, but it is speculated that,

for some reason, the CULPIS GPS receiver temporarily lost lock on the L1 carrier phase of one, or several

satellites at these times, which led to a instantaneous and dramatic change in the apparent satellite visibility

and geometry, which in turn manifested itself as a abrupt change in the GPS position solution. Regardless

of the cause, its occurrence can be identified by large “spikes” in the height standard deviation.

The GPS height standard deviation is a parameter that is reported by the NovAtel Waypoint software.

The Waypoint users manual defines it as the “estimated up position standard deviation in the local level

frame.” This definition is somewhat ambiguous, which makes it difficult to determine mathematically what

this parameter represents and how it is calculated and related to the GPS least squares solution. It is

assumed to be the product σa · σv derived from the covariance matrix, Cl, shown on page 165. The point

being made is that the derivation of the height standard deviation parameter is not entirely clear, which

highlights a limitation of using commercial software packages. Regardless, this parameter has been found

to be a good indicator of unreliable dGPS position solutions, and therefore continues to be used. Since it

is assumed to derive from the covariance matrix, it is also referred to as the height covariance standard

deviation or the height uncertainty. These expressions are all synonymous.

The GPS solution height uncertainty for CASIE flight 9 is shown in the top plot of Figure 5.19. The
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corresponding CULPIS surface elevation profile is shown in the bottom plot. Dramatic peaks in the GPS

height uncertainty are apparent throughout the dataset, and these peaks suggest that the position solution

is of relatively poor quality at these times. In comparison with surface elevation profile, it is evident that

several of the uncertainty peaks are affiliated with anomalous elevations. Based on this correspondence it is

concluded that the GPS and elevation values are not valid during these times and should be removed from

the dataset. The anomalous data is automatically identified by computing the standard deviation of the

height uncertainty in 200 m windows stepped along the time series, and flagging data where the standard

deviation is ≥0.5 mm. These data are a shown in red in Figure 5.19 and are not used for subsequent sea ice

geophysical analysis. The data shown in black are considered valid, and serve as the final surface elevation

data which are used for geophysical analysis. Plots of the height uncertainty and surface elevation for CASIE

flights 4, 7, 8, and 11 are presented in Figures M.3-M.6 on pages 180-183.

As an initial demonstration of the CULPIS’s capabilities for sea ice topography profiling, the ellipsoidal

surface elevation measurements collected during CASIE flight 8 over two different regions of sea ice are shown

in Figure 5.20, along with the coincident visible imagery. The images have not been orthorectified so the

exact locations of the laser ground tracks through the images are not known; however, they do depict the

general ice surface characteristics within in the two regions. Region A consists of relatively smooth ice with

extensive melting and a few distinct ridge features approximately one meter high. The nominal ice surface

has an ellipsoidal elevation of roughly 35 m. Region B consists of broken ice floes and open water leads. In

general the surface is more rough than that of region A and lacks prominent ridge features. Much of the

roughness is affiliated with the small, broken ice floes. As evident in the visible imagery, these floes often

have rough, ridged edges that are likely created by impact and compression with the surrounding ice. This is

a common feature that is seen throughout the CASIE image dataset. Laser returns from the open water at

a relative northing distance between 430-500 m indicate that the local water level has an ellipsoidal surface

elevation of ∼32.6 m, as shown by the blue line.

There are a number of important points to discuss regarding the sea ice profiles from regions A and B.

To begin, the nominal ice surface ellipsoidal elevation is approximately two meters higher in region A than in

region B. This is most likely due to large-scale ocean surface fluctuations resulting from the spatial variability
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Figure 5.19: CASIE flight 9 dGPS height uncertainty and surface elevation profiles. The dGPS height
uncertainty is the covariance standard deviation described by Equation I.16 on page 165. All data are
rejected where the running standard deviation of the height uncertainty within a 200 m window is ≥0.5 mm.
These data are shown in red. Plots of the height uncertainty and surface elevation for CASIE flights 4, 7, 8,
and 11 are provided in Appendix M.
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Figure 5.20: The surface profiles for two regions of sea ice overflown during CASIE flight 8. These surface
profiles were generated with data collected at ∼165 m AGL and processed using long-baseline dGPS position
solutions relative to reference stations NYCU & NYA1. The sea ice in region A (black profile, left image)
is relatively smooth with a large ridging structure, extensive melting, and no open-water leads. The sea ice
in region B (red profile, right image) is rougher, and is comprised of angular floes and leads. CULPIS data
collected over the large lead in region B serves as a tie point that is used to approximate the local water
level (shown as the blue line). The sea ice freeboard can then be determined relative to this level. The large
height bias between sea ice in region A and B is predominantly due to geoid and ocean dynamic topography
differences at these two locations. With the absence of open-water leads in region A, it is not possible to
directly measure the local water. However, the lowest ice elevations, typically located on either side of ridge
features, are a close approximation of the water level, and thus, these minimum elevations can be used to
estimate the freeboard [48].
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of the geoid, dynamic ocean topography, tides, and atmospheric pressure loading. These phenomenon will

cause the ocean surface elevation level to vary by several meters over distances of hundreds of kilometers,

and considerable effort is placed on accurately measuring their magnitude to aid in the analysis of Arctic

sea ice satellite altimetry data (e.g. [27, 29]). The broad-scale sea level fluctuations of 1-5 meters are clearly

evident in the CASIE flight 9 elevation profile shown in the bottom plot of Figure 5.19.

The large-scale ocean surface variability makes it challenging to determine the ice freeboard from the

profile data because the local water elevation is not directly known, such as region A. In other locations, such

as region B, leads in the ice are present, and laser returns from open water make it possible to determine the

local water level (represented by the blue line in Figure 5.20), which can then be subtracted from the profile

ellipsoidal elevation to give the freeboard height. In region A this is not possible because open water is not

present. However, as discussed by Weeks et al.[128] and Hibler et al.[48], the minimum ice elevations located

on either side of pressure ridges are close to, or slightly below, the local water level. As such, the minimum

profile elevation for a given region, whether it be derived from laser returns over open water or ice, is a valid

approximation for the local water level. Of course the sample region must be large enough to capture the

ice ridging features, but not so large that it entrains the large-scale ocean surface and instrumentation error

variability. From the quantitative and qualitative analysis presented in this chapter, it is determined that a

region 200 m in distance is suitable for computing the minimum elevation to estimate the local water level.

This is justified in the following section.

5.5 Error Analysis Summary

The performance assessment presented in this chapter was carried out in order to quantify the CULPIS

elevation measurement error sources and to characterize its capabilities for sea ice and ice sheet surface

profiling. This objective was accomplished by taking a number of steps. First, the CULPIS kinematic

dGPS positioning error was evaluated by comparing ground-based runway survey measurements to a “truth”

runway reference surface. Then, the CULPIS full-system altimetry error was evaluated by comparing flight-

based runway profile measurements to the runway reference surface, and by examining the error between

ice sheet measurement crossover data collected during MUSCOX. Finally, sea ice elevation profiles were
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examined to highlight issues associated with measuring ice freeboard, roughness, and ridging.

In general, the CULPIS elevation measurement accuracy is critically affected by GPS positioning

uncertainties, which are dominated by ionospheric and tropospheric propagation error. Since the CULPIS

utilizes a single-frequency receiver (to minimize cost), atmospheric corrections cannot be made. During

science mission flights dGPS baselines range from tens to hundreds of kilometers, and thus ionospheric

and atmospheric signal propagation effects are substantial. The IMU angle determination error and sensor

misalignment error also contribute a relatively large amount of error, Furthermore, the horizontal lever-arm

offset between the GPS antenna and laser were not measured following the UAS CULPIS integration, and

thus this error is not accounted for.

Figure 5.21 summarizes the CULPIS measurement error characteristics and its short-lag, relative

positioning capabilities. The data plotted in black and red are the ellipsoidal surface elevation variograms

of the profile data collected in sea ice regions A and B corresponding to Figure 5.20. These surface profiles

were derived using CULPIS GPS data which were positioned using long-baseline (>200 km and <500 km)

dGPS processing relative to the NYCU & NYA1 reference stations. The ice surface standard deviation grows

rapidly to 15 cm over a short lag distance of approximately 20 m, and then continues to grow slowly to reach

the maximum variogram sill standard deviation of approximately 18-23 cm at lags greater than 200 m. The

variogram sill represents the nominal ice surface roughness, and agrees well with ice roughness computations

presented in the following chapter.

The data plotted in green and cyan are the variograms of the ground-based MUSCOX GPS runway

survey error and the flight-based CASIE runway profile error, respectively. The MUSCOX runway survey

GPS data (affiliated with the green variogram) were positioned using long-baseline dGPS processing relative

to to the SRMP reference station (baseline distance of 426.5 km). This is the same variogram plotted in green

in the left panel of Figure 5.9, and it depicts the GPS error over the first 500 m of lag. The CASIE runway

profile GPS data (used to derive the elevation data affiliated with the cyan variogram) were positioned using

long-baseline dGPS processing relative to the KMJP reference station (baseline distance of 890.8 km). The

variogram shown here in cyan is the same variogram shown in green in the right panel of Figure 5.16, and it

depicts the full system profiling error of the CULPIS over a relative short distance lag of ∼100 m (roughly
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Figure 5.21: Sea ice surface and CULPIS instrumentation error variograms. The variograms plotted in
black and red depict the sea ice surface elevation variability (elevation standard deviation as a function of
lag) collected in regions A and B discussed in Figure 5.20. These surface profiles were generated with data
collected at ∼165 m AGL and processed using long-baseline dGPS position solutions relative to reference
stations NYCU & NYA1. The variogram plotted in green depicts the surface elevation error variability of
the MUSCOX long-distance dGPS runway survey processed relative to the SRMP reference station. This is
the same data that is plotted in green in the left panel of Figure 5.9. The variogram plotted in cyan depicts
the surface elevation error variability of the CASIE runway profile generated with CULPIS data collected
at ∼70 m AGL and processed using dGPS solutions relative to long-distance reference station KMJP. This
is the same data that are plotted in green in the right panel of Figure 5.16. The variograms shown here in
green and cyan represent the systematic error variability of the CULPIS components as a function of time
or distance, assuming a flight speed of 30 m/s. The systematic variability is considerably less than the ice
surface variability, shown in black and red, over these lags. This figure indicates that the CULPIS can be
used to precisely measure relative changes in ice surface elevation over short distance lags less than 200 m
with systematic error less than 10 cm.
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half the distance of the runway profile which was used to generate the variogram).

Figure 5.21 shows that the GPS altitude error grows relatively slowly, whereas the full system profiling

error grows relatively fast, reaching its peak standard deviation of ∼3 cm at a lag of only ∼20 m. The full

system error includes the error contribution from the GPS, but it is evident that the GPS error does not

dominate the system error until a lag of ∼100 m. This suggests that at lags less than 100 m the system error

is dominated by the laser, IMU, lever-arm, and sensor misalignment errors, which have a combined error

standard deviation of ∼3 cm.

The GPS error continues to grow with lag, and thus it is important to choose a lag distance over

which relative surface elevation measurements can be computed to minimize the instrumentation error to an

acceptable level. At a lag of 200 m the GPS error is ∼4 cm, and as stated above, the remaining systematic

error is ∼3 cm. Therefore, for distance lags of 200 m the full system error will be ∼7 cm, which meets the

goal measurement precision (point-to-point error) requirement of 10 cm. Based on this error analysis, the

subsequent geophysical analysis utilizes relative surface heights computed within 200 m sections of data to

evaluate sea ice roughness and ridging characteristics. This method eliminates the large-scale ocean surface

variability and minimizes the CULPIS systematic error to an acceptable level less than 10 cm.

The CULPIS error budget is summarized in Table 5.9 and is broken into two sections. The top section

characterizes the CULPIS absolute measurement error and represents the vertical accuracy of individual

elevation measurements collected over all time and distance scales. These are conservative values that

represent the high-end error bounds. The bottom section specifies the relative error for measurements

collected over short time and distance scales. In other words, the absolute error specifies the accuracy

to which ellipsoidal elevation measurements are known, and the relative error specifies the precision to

which elevation measurements are known over relatively short scales. The absolute accuracy is relevant to

applications such as ice sheet elevation mapping where measurements are collected over relatively long time

and distance scales (i.e. ≥ minutes, ≥ decimeters) and the absolute elevation is critical for estimating mass

loss and gain. On the other hand, the precision is relevant to applications which are focused on relative

changes in surface elevation over relatively short time and distance scales (i.e. ≤ minutes, ≤ decimeters),

such as investigations of sea ice freeboard, roughness, and ridging characteristics. The conservative estimate
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Table 5.9: The CULPIS measurement error budget. The top section shows the error source and the absolute
error value for each source. These are conservative error bounds distilled from the analysis presented in this
chapter that represent the absolute measurement accuracy over long scales (i.e. ≥ minutes, ≥ decimeters).
The typical absolute error values may be lower for sources that are dependent on the pointing angle, GPS
baseline distance, height AGL, or sensor alignments and offsets. The lowest error that can reasonably be
expected with the current CULPIS instrumentation is ∼50 cm, based on more liberal assumptions than
those reported in this table. Reducing the absolute error to <20 cm may be achieved by upgrading to a
dual-frequency GPS receiver, implementing a more precise IMU, and by accounting for sensor alignments
and offsets. The bottom section shows the lag-dependent, relative measurement error. This represents the
measurement precision over short scales (i.e. ≤ minutes, ≤ decimeters). These values are based on the
variogram analysis summarized by Figure 5.21. The CULPIS error of 3 cm at a lag of 20 m is dominated by
the laser, IMU, lever-arm, and sensor misalignment errors. The GPS error is relatively small at a lag of 20
m, but grows to 4 cm at a lag of 200 m. As such, the full systematic error is 7 cm at a lag of 200 m.

error source absolute error (i.e. accuracy) [cm]
timing latency 1

data interpolation 1
laser range 2

GPS reference station 2
sensor lever-arm offsets 5a

sensor misalignment 17b

IMU angle 17c

GPS altitude 50± 25b

CULPIS total 95± 25

lag-dependent variogram error relative error (i.e. precision) [cm]
CULPIS 200 m lag 3e

GPS altitude 200 m lag 4

CULPIS 200 m lag total 7

a Value for 50 cm horizontal offset, 5◦ off-horizontal attitude angle.
b Value for 1◦ misalignment, 5◦ off-nadir pointing angle, 100 m AGL range.
c Value for 1◦ angle determination error, 5◦ off-nadir pointing angle, 100 m AGL range.
d Value for long-baseline (order 500 km) L1 carrier phase dGPS positioning.
e Value based on data collected from ∼70 m AGL during straight and level flight.
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of the CULPIS absolute measurement error is 95±25 cm, and the relative error over a 200 m lag is 7 cm.

The CULPIS measurement timing latency and the measurement interpolation to the laser sample times

are reported by Edwards[25] to introduce an error of ∼0.5 cm and ∼0.1 mm, respectively. Conservative values

of 1 cm are reported in Table 5.9. The laser range error of 2 cm encapsulates most of the residuals shown in

Figure 5.3, and is the same value reported by the manufacturer. An error of 2 cm is also attributed to the

position of the dGPS reference stations ILCU and NYCU. An error of 5 cm is attributed to the GPS antenna

and laser horizontal lever-arm offset, which is the height difference between these two sensors given a 50 cm

horizontal offset and a 5◦ aircraft off-horizontal attitude angle. That error will be <1 cm if the horizontal

offset is less than 10 cm, which typically has been the case. With a 1◦ IMU angle determination error, the

corresponding elevation error is 17 cm for data collected at a 5◦ off-nadir pointing angle from 100 m AGL.

Sensor misalignment manifests itself as IMU uncertainty error, and introduces an additional 17 cm of error

for data collected at a 5◦ pointing angle from 100 m AGL with a 1◦ misalignment. Both of these errors are

reduced to ∼10 cm for a 3◦ pointing angle, which is a more liberal estimate of the nominal flight conditions.

The GPS altitude error of 50±25 cm is representative of the long-baseline L1 dGPS error observed during

the MUSCOX runway survey. The GPS error may be larger over longer time periods (i.e. measurements

made over periods of hours, or longer), and may vary with changes in geographic location and solar activity.

Based on the cited accuracy of NASA airborne laser systems, it is speculated that implementing L1/L2

dGPS processing could reduce the error to ∼10 cm.

In summary, the CULPIS absolute error is 95±25 cm, and is dominated by L1 dGPS altitude errors

stemming from atmospheric propagation delay. The lowest error that can reasonably be expected with the

current CULPIS instrumentation is ∼50 cm. Reducing the absolute error to <20 cm for future campaigns will

require upgrading to a dual-frequency GPS receiver, a more precise IMU, and highly-accurate measurements

of sensor alignments and offsets.

Based on the information learned from this error analysis, the processing steps taken to compute

high-quality surface elevation data suitable for scientific geophysical analysis are outlined below. It is worth

noting that each individual step has been automated such that no manual user intervention, interpretation,

or quality control is required.
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• Differentially position the temporary GPS reference station relative to the closest permanent GPS

monument (KAGA during MUSOCX, NYA1 during CASIE) using NovAtel Waypoint, and use the

RSS method (see Appendix H) to accurately compute its true position. Alternatively, use the JPL

online APPS to compute its position.

• Differentially position the CULPIS GPS flight data relative to the temporary GPS reference station.

May use multiple reference stations if there are several in close vicinity. This was done for CASIE

data where NYCU & NYA1 were both used simultaneously to position the CULPIS GPS data.

• Remove non-valid laser data, which is indicated by a range value equal to 5 mm.

• Linearly interpolate the dGPS altitude, roll, pitch, and COG data to the laser measurement times.

• Use range, dGPS, roll, pitch, and COG data to geolocate the measurement using Equation 5.1.

• Remove data contaminated by clouds, which is indicated by an ellipsoidal surface elevation ≥45 m.

• Remove data collected at high aircraft attitude angles, where |roll| is ≥3◦ and pitch is ≤1◦ and ≥7◦.

• Compute the running standard deviation of the dGPS covariance height uncertainty using a 200 m

window, and remove data where the standard deviation is ≥0.5 mm.

• Compute relative surface elevations within 200 m windows for further geophysical analysis.
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Sea Ice Topography Profiling

6.1 Sea Ice Profiling Overview

The purpose of this chapter is to evaluate and demonstrate the capabilities of CULPIS to measure the

basic topographic properties of sea ice, such as ice freeboard, roughness, and ridging. To begin, two examples

are presented that illustrate the general nature of the CULPIS elevation data and the usefulness of coincident

imagery to help interpret and validate the data. In Section 6.2 the CASIE data is examined in more detail.

Proxy freeboard elevation is derived and used to calculate surface roughness, and ridge height and ridge

separation distributions. These topography characteristics represent the 2009 summertime sea ice conditions

found in Fram Strait. The observed ridge distributions are compared to theoretical distributions as a means

to verify the CULPIS measurements. To finish, in Section 6.3 the proxy freeboard data are used to simulate

measurements that would be made by altimeters with a larger ground footprint in order to demonstrate that

fine-resolution spatial sampling is needed in order to properly observe the ridging distributions.

An initial example of CULPIS of sea ice topography measurements is presented as Figure 6.1, which

shows the surface elevation profile along a 2 km stretch of sea ice collected during CASIE flight 9. These

data were collected along the red lines that transect the two underlying images. The red lines are purely

notional as the exact laser footprint locations within the scenes are not known because the imagery has

only undergone center-point geolocation and has not been orthorectified. The top image is a true-color

mosaic of 11 consecutive still camera digital photographs. Open leads, ice floes, ridges, smooth ice, and

melt ponds are all visible. The bottom image shows the microwave backscatter collected by the microASAR
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instrument over the same region ∼15 minutes prior, and it uniquely identifies similar features. The surface

heights span approximately 4 m and depict a dynamic topography with regions of low and high variability

and ice floes of varying thickness. There are clearly two distinct ice floe types within the scene; those with

smooth ice and no ponding, and those with rough ice and extensive ponding. These characteristics may be

related to the ice thickness and age, and provide insight to the overall stability of the ice pack [88]. The

surface features captured by these three datasets have high correspondence with one another and illustrate

the complimentary nature of these UAS measurements.

As a second example, elevation profiles generated from data collected during two passes at different

altitude over an ice ridge complex are presented in Figure 6.2. Each overpass represents about 10 seconds

of data. The black and red lines on the image indicate the approximate locations of the transects. The

still image is timestamped and geolocated, but the exact locations of the transects within the scene are

not precisely known because the image itself is not orthorectified, and the transects were collected roughly

50 minutes apart. The latter is a factor since the sea ice pack is in motion. The second overflight was

therefore shifted to help compensate for ice drift, which was estimated from the local wind data provided in

real-time by the SIERRA’s telemetry data; however, some mismatch is unavoidable when using this basic

dead-reckoning approach. In general, the data collected at the two altitudes depict similar features. There

are two prominent ridge peaks approximately 1 m high with small ridges and depressions evident throughout

the profiles. The smaller features are not as evident in the data collected at the higher altitude since the

size of the laser footprint on the ground is larger, leading to a more integrated and smoothed surface signal.

The ability to resolve fine-scale relative height variability, as shown here, allows for the estimation of

surface roughness and sea ice freeboard (ice & snow), without the need for absolute height referencing, by

using the range to open leads as reference “tie-points” of the local water level (e.g. [48, 51]). This of course

requires that laser returns be obtained from open water in the leads, a necessity that is not always met. When

the open water is very calm, as was the case for the flight tracks shown in Figure 6.1, the surface behaves as

a specular reflector, similar to a mirror. In that figure, data is missing over the leads because the laser pulses

were reflected off the water surface away from the laser receive optics. The return pulse was never detected

and a measurement was not reported. To address this limitation, the surface elevation measurements can be
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corrected for the local geoid, tides, and ocean dynamic topography, and then expressed as absolute height

relative to the local sea level in order to provide a direct measure of freeboard (e.g., [27, 28]). That process

is beyond the scope of this research. As was previously mentioned, the lowest-elevation within a specified

region is assumed to represent the local water level. This lowest-elevation level is computed along the entire

flight track and then removed from the native ellipsoidal heights to generate a proxy freeboard.

As a means to verify the ridge heights measured by the CULPIS altimetry data, and to demonstrate

an additional method for computing ridge heights, a CULPIS still photo was used to compute the height

of ridge features based on the sun elevation angle and the shadow lengths. The ridge height calculations

and results are presented in Appendix M (see Equation M.1 and Figure M.1). In general, the ridge heights

calculated from the shadow lengths are of similar magnitude to the ridge heights identified in Figure 6.2

from CULPIS elevation profile data, which adds validity to the CULPIS altimetry measurements. It also

demonstrates that ridge heights can be computed from the CULPIS imagery, independent of the altimetry

data. Using stereo-pair photography it may be possible to compute ridge heights across the swath covered by

the still imagery, thereby achieving 2-dimensional (2D) spatial coverage such as that provided by a scanning

laser system. An additional example of the still photography utility is shown in Appendix M where an image

has been classified to determine the fractional coverage of different sea ice surface types (see Figure M.2

and Table M.1). Finally, coincident microASAR and CULPIS video images are presented in Appendix M

to illustrate their complimentary nature (see Figures M.8-M.10). These examples elude to the wealth of

information contained within the CASIE dataset and the potential for future studies to exploit these data.

6.2 Arctic Sea Ice Profiles

One of the overarching objectives of the CASIE campaign is to identify distinguishable morphological

characteristics of sea ice in Fram Strait, and to investigate the correspondence between these characteristics

and the age and originating location of the ice. The Arctic sea ice age in July 2009 during the CASIE

deployment is shown in Figure 6.3. During this time, the study region (indicated by the black triangle)

contained predominantly one and two year old ice. The black ice drift tracks in Figure 6.3 show the motion

of select ice parcels located within the CASIE study region in July 2009 over a two year period prior to
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the deployment (motion from July 2007 through July 2009). These tracks were derived using an ice motion

tracking algorithm developed by Dr. Charles Fowler at the University of Colorado at Boulder, which has

proven valuable for tracking individual ice parcels and their characteristics as they advect through the Arctic

Ocean [115]. It is evident that the ice within the CASIE study region originated near the East Siberian Sea

and traversed across the central Arctic via the Transpolar Drift. Since the ice within the study region is all

of similar age and evolved along similar drift tracks, it is expected that the observations collected during

CASIE will show similar morphological characteristics throughout the region.

The primary ice surface morphological features investigated here are ice freeboard, roughness, and

ridging characteristics. As previously mentioned, without manual identification of open-water leads, it is

challenging to remove the large-scale elevation variability associated with the geoid, dynamic ocean topog-

raphy, tides, and atmospheric pressure loading. As such, a proxy-freeboard is computed from which surface

roughness and ridging characteristics are further derived.

The proxy-freeboard (referred to simply as freeboard from here onward) and roughness measurements

for CASIE flight 9 are illustrated by Figure 6.4. The CULPIS surface elevation measurements are shown

in the top plot. Data have been removed where the laser return was not valid (i.e. the laser returns an

error value of 5 mm for the range), where the IMU attitude data were outside of the specified bounds (i.e.

roll outside of ±3◦, pitch outside of 1-7◦), and where the GPS height uncertainty was large. The running

minimum elevation, shown in red, is used as a proxy for the local water level. This is the minimum elevation

within a 400 m window stepped at 200 m increments. The assumption here is that within the 400 m window,

the minimum elevation is associated with an open-water lead and thus represents the local water level. While

extensive manual validation of this assumption was not carried out, it is certainly possible that open water

was not measured every 400 m throughout the dataset. However, as discussed in Hibler et al.[48] and first

noted by Weeks et al.[128], the minimum elevation points located on either side of ridging features are often

depressed slightly below water level. Through this reasoning, it is assumed that the minimum elevation

computed here is a suitable estimate of the local water level.

The ice freeboard, shown in the center plot of Figure 6.4 for CASIE Flight 9, is computed by subtract-

ing the running minimum elevation from the native ellipsoidal elevation profile. This is essentially the same
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Figure 6.3: The age of Arctic sea ice in July 2009 during the CASIE deployment, and 2-year ice drift tracks
for sea ice located within the CASIE study domain. The sea ice found within the CASIE domain (shown
by black triangle) during the deployment period was predominantly 1-year and 2-year old ice. The drift
tracks that extend across the Arctic Basin show the motion of this ice over a 2 year period prior to the
deployment. This figure suggests that the ice within the CASIE domain originated in the same general
region and experienced similar drift motion. The ice age data and ice motion algorithm were provided by
Dr. Charles Fowler at University of Colorado.
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Figure 6.4: CASIE flight 9 surface elevation profile (top), freeboard (middle), and roughness (bottom). Data
collected over open-water are shown in blue and data collected over the ice pack are shown in black. The
location of the ice pack edge is shown by the green lines. The running minimum elevation (shown in red at
top) was computed within a 400 m window stepped at 200 m increments, and serves as a proxy for the local
water level. The ice freeboard is then equal to the ellipsoidal surface elevation minus the running minimum
elevation. The freeboard for open-water data represents the ocean wave height amplitude. The surface
roughness is the freeboard standard deviation within a 200 m box stepped at 100 m increments. The surface
freeboard and roughness are noticeably higher over sea ice. The surface elevation, freeboard, and roughness
plots for CASIE flights 4, 7, 8, and 10 are shown as Figures M.3-M.6 on pages 180-183.
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Figure 6.5: CASIE flight 9 observed sea ice freeboard PDF. The mean freeboard hight, µh, is 0.32 m. The
freeboard median and mode values are 0.26 m and 0.19 m. The top x-axis shows the equivalent ice thickness
(freeboard plus draft) based on Equation 6.1.

method employed by Hibler et al.[48] to remove aircraft altitude variations from laser profiles of sea ice in

order to estimate freeboard and further derive pressure ridge characteristics. The ice freeboard distribution

for CASIE flight 9 is shown in Figure 6.5. The freeboard distribution is asymmetric with mean, median,

and mode values of 0.32 m, 0.26 m, and 0.19 m. The mean ice freeboard of 0.32 m corresponds to an ice

thickness of 2.97 m based on Equation 6.1, which was empirically derived by Alexandrov et al.[2] by fitting

a linear regression to freeboard and thickness observations. Since the CULPIS data were collected toward

the end of the summer melt period, it is assumed that the snow cover has melted away, and therefore does

not need to be accounted for in the conversion from freeboard to total ice thickness.

Hi = 8.13 Fi + 0.37 (6.1)

where...

Hi = ice thickness

Fi = ice freeboard

The CULPIS sea ice freeboard and corresponding thickness values agree well with thickness observa-

tions made in early April 2009 (approximately 3.5 months prior to the CASIE deployment) using an airborne

electromagnetic induction sounding instrument, which showed mean ice thicknesses of approximately 2-3 me-
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ters along flight tracks over Fram Strait [34]. This high level of correspondence between these two datasets

further validates the CULPIS measurements.

Using the ice freeboard data is is possible to compute a general surface roughness parameter that is

independent of the water level variability. The general surface roughness is defined here as the elevation

standard deviation within a 200 m section of data, and is shown for CASIE Flight 9 in the bottom plot of

Figure 6.4. The 200 m distance was chosen in accordance with the CULPIS error analysis study, summarized

in Section 5.5, which indicates the accumulated instrument error is less than 10 cm over this distance.

The surface elevation roughness along all CASIE science mission flight tracks is shown in Figure 6.6.

The color-coded flight tracks corresponding to Figure 4.3 on page 34 are visible where surface roughness

data does not exist. Missing roughness data is predominantly due to cloud cover obstructing the laser signal.

Again, the open-ocean freeboard height represents the wave height amplitude. Within the sea ice pack there

are regions of relatively low and high surface roughness, but there is is no clearly dominant spatial pattern

or arrangement to the surface roughness. This agrees with the expectations since the ice pack within the

CASIE study region is comprised mainly of one and two year old ice that originated in similar locations

and followed similar drift tracks. It does, however, appear that the ice toward the north that lies along the

horizontal track of flight 8 is relatively smooth, whereas the ice to the west and south is more rough.

There is a region of high roughness in the open ocean between the northern coast of Svalbard and

the edge of the ice pack. CULPIS laser data and camera imagery indicate that large waves were present

in this section of the ocean during the flight overpass which accounts for the high surface roughness. This

indicates that the CULPIS is able to measure ocean wave amplitude, which presents another application for

this instrument package. An example of open ocean wave detection is presented as Figure M.7 on page 184.

Sea ice ridge peaks are identified in the freeboard data, and the ridge height and ridge separation

distributions are compared to the theoretical distributions derived by Hibler et al.[50] to evaluate the validity

of the CULPIS sea ice topography measurements. Several steps are taken to identify ridge peaks in the

CULPIS elevation data. First, ice freeboard is computed by removing the running minimum elevation as

previously described. Then, every elevation point is averaged with the surrounding ±5 points to generate a

running mean freeboard elevation profile in order to smooth the noise inherent to the laser measurements.
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Figure 6.6: Sea ice surface roughness along all CASIE flight tracks. The surface roughness is the standard
deviation of the freeboard height within a 200 m window stepped at 100 m increments. Missing data is
predominantly due to cloud cover obstructing the laser signal. In general, the ice surface is rougher than
the ocean surface at the scale of 200 m, except for a section of high roughness (red in color) located between
the northern coast of Svalbard and the sea ice edge. CULPIS laser data and still and video camera imagery
indicate that large waves were present in this section of the ocean during the flight overpass. Regions of both
high and low surface roughness exist throughout the ice pack, and the observations suggest higher surface
roughness in the central and southern regions.
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Computing the running mean using the neighboring ±5 data points is computationally much faster

than performing a spatial running average based on relative distance; however, it has a caveat associated with

it. The neighboring running mean method that was used is the same as a spatial running mean only if the

data are uniformly spaced throughout the dataset. Due to variations in flight speed, aircraft attitude motion,

and missing data, this is not the case. As such, the neighbor running mean introduces non-linear errors in the

spatial dimension. Fortunately, the elevation data are relatively uniformly spaced during CASIE flight 9 and

these errors are relatively small. The spacing was found to be ∼10 cm between consecutive measurements.

As such, the 11-point running mean that was implemented (each data measurement ±5 measurements)

corresponds to a ∼110 cm running average.

The final step taken to identify ridge peaks is to find local maxima in the smoothed freeboard data

which are greater than 60 cm high (a specification also used by Hibler et al.[50]) and separated by more than

350 measurement points. With the ∼10 cm measurement spacing, this corresponds to a minimum allowable

ridge separation of 35 m. Once again, the same spatial non-linearity issue is associated with this ridge

spacing requirement. The ridge separation requirement of 350 measurement points was determined by visual

inspection. Requiring that the ridge peaks be separated by 350 points is implemented to limit the number

of false-positive ridge peak detections and to identify only the prominent peaks within the complex ridging

structures. The ridge detection methodology is illustrated in Figure 6.7 for a 500 m section of data. The

freeboard surface elevation is shown in black, the smoothed freeboard is shown in green, and the detected

ridge peaks are shown in red.

The ridge detection methodology has a couple drawbacks beyond the spatial non-linearity issue.

Taking the 11-point running average slightly suppresses the ridge peak heights. Notice that the red dots

in Figure 6.7 fall several centimeters below the actual ridge peak shown by the black freeboard data. Also,

requiring the 350-point peak separation ignores closely separated peaks. As such, the peak located at a

relative distance of ∼400.75 m in Figure 6.7 is not identified. As will be shown below, the ridge height and

ridge separation distributions agree very well with the theoretical distributions presented by Hibler et al.[50],

which suggests that the ridge detection methodology implemented here is quite satisfactory. However, future

effort should be taken to improve the ridge detection method.
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Figure 6.7: A section of CASIE flight 9 elevation profile data illustrating the sea ice ridge peak detection
methodology. Ridge peaks are identified in the following manner: (1) The running minimum elevation
is removed from the native CULPIS surface profile data to generate the proxy freeboard surface height
measurements, shown in black. (2) An 11-point running average, stepped every point, is computed from the
freeboard data to smooth the laser measurement noise. This running average is shown in green. (3) Ridge
peaks, shown in red, are then identified as local maxima surface heights >0.6 m that are separated by more
than 350 points.
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The theoretical normalized sea ice ridge height PDF as derived by Hibler et al.[50] is shown as Equation

6.2. This distribution assumes that the ridges are randomly oriented linear features which are geometrically

congruent in cross section (i.e. have a cross-sectional area proportional to the square of their relief). A

variational calculation then yields the most likely distribution of ridge heights that will produce a given

volume of deformed ice per unit area [50, 122]. More specifically, for a given sea ice elevation dataset with a

mean ridge height of 〈h〉, this equation specifies the probability that a ridge will have a height greater than

h0 and between h and h + dh, where h0 is the minimum allowable ridge height and dh is the ridge height

distribution bin size.

P (h)dh = 2λ〈h〉eλh
2
0e−λh

2

dh (6.2)

where...

P (h)dh = probability that a ridge will have a height between h and h+ dh

λ = parameter determined from average ridge height (Figure 3 in Hibler et al.[50])

h = ridge height

〈h〉 = mean ridge height

h0 = minimum ridge cutoff height

dh = ridge height bin size

In practice, Hibler et al.[50] specified a minimum ridge height of 60 cm, which is the same value utilized

in the current ridge detection methodology described above, and they specified a ridge height bin size of 30

cm, as utilized here. It is important to note that the mean ridge height, 〈h〉, is the only empirically-derived

value that is required to compute the PDF. The calculation does require the parameter λ, but this is also

dependent upon the mean ridge height and can be determined from Figure 3 in Hibler et al.[50]. As such, it

is evident that the ridge height distribution for any sea ice elevation dataset is only dependent on the mean

ridge height.

The normalized theoretical PDF for the distance separation between adjacent sea ice ridges follows a

negative exponential described by Equation 6.3 [50, 91]. This equation specifies the probability that adjacent
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ridges will be separated by a distance x given a mean separation distance of 〈x〉 and a distance bin size of

dx. In practice, Hibler et al.[50] specified a separation bin size of 60 m and only investigated the separation

of ridges who’s height was greater than 60 cm (as was done with the ridge height PDF). Similar to the ridge

height PDF, the ridge separation PDF is based on only one empirically calculated value, the mean ridge

separation in this case.

P (x)dx = µe−µxdx (6.3)

where...

P (x)dx = probability that adjacent ridges will be separated by a distance x

x = ridge separation distance

〈x〉 = mean ridge separation distance

µ = population parameter estimated by
1

〈x〉

dx = ridge separation bin size

The CASIE flight 9 mean ridge height and mean ridge separation were calculated to be 1.05 m and

166.3 m, respectively. The ridge heights were binned using a minimum height of 60 cm and a bin size of 30

cm, and the ridge separations were binned using a bin size of 50 m to generate the observed ridge height

and ridge separation PDFs, which are shown in Figure 6.8, along with the theoretical distributions and

the difference between the observations and the theory. It is evident that the observations show a greater

probability of smaller ridges (0.6-0.9 m ridge heights) and shorter separations (0-100 m ridge separations),

and a smaller probability of larger ridges (0.9-1.8 m ridge heights) and larger separations (>100 m ridge

separations) than indicated by the theory. However, the observations and theory generally agree to within 5%

of each other for all bins, which strongly validates the CULPIS elevation measurements and the ridge peak

detection methodology. The red and green theoretical ridge height curves are the same as those presented

in Figure 8 of Hibler et al.[50], and illustrate how the distribution shifts to a greater probability of higher

ridge hights for sea ice with a higher mean ridge height.

To investigate the relationship between ridge height and ridge separation, the separations between
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Figure 6.9: CASIE flight 9 observed sea ice ridge separation as a function of ridge height (shown in black),
and the exponential best-fit regression (shown in red, Equation 6.4). The 1σ error bars are also plotted, and
illustrate the wide separation distribution and few number of the largest ridges.

ridges contained within each height bin of Figure 6.8 were computed. The mean ridge separation for each

hight bin is shown in Figure 6.9, along with the 1σ separation standard deviation error bars. This figure

suggests that smaller ridges are spaced closer together, which is to be expected since they occur more

frequently. The large error bars for the highest ridges indicates that there are relatively few large ridges and

their separations are quite variable. Nonetheless, the empirical relationship between sea ice ridge height and

ridge separation is described by Equation 6.4.

x = 73.7e2.1h (6.4)

where...

x = ridge separation distance

h = ridge height

The mean sea ice ridge height and the ridge frequency in one kilometer sections of data along all CASIE

science mission flight tracks are shown in Figure 6.10. Again, the color-coded flight tracks corresponding to

Figure 4.3 on page 34 are visible where these data do not exist. To be clear, ridge frequency is defined as the

number of ridges per kilometer. As previously discussed, the mean ridge height is an important parameter

that can be used to describe the ridge height distribution within a given region. Additionally, the ridge
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frequency is an empirical value that describes the ridging intensity, which can be used to further describe

sea ice characteristics and its variability [51]. Similar to the ice surface roughness, the mean ridge height

and ridge frequency do not show any predominant spatial pattern within the ice pack. However, as noted

by Hibler et al.[51], “annual variation in new ice production due to ridging is sufficiently large to suggest

that ridging plays an important role in the overall mass balance of the Arctic Basin,” which highlights the

importance of monitoring these sea ice characteristics.

6.3 Simulated Sea Ice Profiles

The scientific community places a considerable amount of effort into estimating the total ice mass

balance within the Arctic Basin; however, satellite radar and laser altimetry systems with relatively large

footprint sizes are the primary instruments utilized to make such measurements on a basin-wide scale. In

the most basic sense, the range measurement detected by an altimeter system is equal to the true surface

height structure within the footprint convolved with the sensor impulse response function. This provides

a single elevation measurement that, in effect, is the mean (or weighted mean) surface elevation within

the measurement footprint. As such, large footprints are unable to resolve fine-scale ridging features, and

therefore may not properly represent the true thickness or ridging characteristics of the the sea ice.

To investigate the affect that the measurement footprint size has on the ability to accurately detect

the sea ice ridging characteristics, the fine-resolution CULPIS surface profile data from CASIE flight 9 are

averaged over a range of scales to simulate the spatial smoothing that occurs for measurement footprints with

diameters ranging from 10-70 m at an increment of 10 m, and then the ridge height and separation PDFs are

computed for the simulated elevation data. This range of footprints was chosen because 70 m is the footprint

diameter of ICESat1 and 10 m is the footprint diameter of ICESat-22 . While this investigation is not meant

to simulate the ICESat and ICESat-2 measurements, the chosen range of diameters will provide a certain

level of insight to both the legacy and next-generation instrumentation capabilities, and will demonstrate

the utility of fine-resolution measurements that can be provided by small UAS.

To simulate the elevation that would be detected by different footprint sizes, each CULPIS freeboard

1 ICESat footprint diameter taken from Zwally et al.[132].
2 ICESat-2 footprint diameter taken from http://icesat.gsfc.nasa.gov/icesat2/instrument.php
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data point is averaged with a specified number of surrounding points to create a smoothed, running-average

freeboard elevation profile. For example, to simulate a 10 m footprint, each elevation point is averaged with

the surrounding 100 points (±50 points). With the nominal 10 cm spacing, averaging 100 points is equivalent

to averaging over a distance of 10 m. In this fashion, a 70 m footprint is simulated by averaging each data

point with the surrounding 700 points (±350 points), and so on.

The running-average simulation method was utilized because it is relatively simple to implement and

computationally fast, but it does have several implications worth noting. First of all, in order to generate

the desired spatial average (e.g. 10 m footprint) this method assumes that adjacent elevation data points

have exactly 10 cm horizontal spacing. As was previously discussed, the data point spacing is not exactly 10

cm, nor is it perfectly uniform throughout the dataset. Secondly, the simulation averaging method retains

the CULPIS along-track measurement spacing of approximately 10 cm, which may not be representative of

altimeter systems with larger footprints. For example, ICESat has an along-track measurement spacing of

170 m (see Table 5.1), from which it is not possible to resolve continuous or individual ridge profiles. However,

Kowk[74] had done promising work using ICESat waveform signatures to identify ice roughness prior to its

failure in 2009. The third point worth noting is that the spatial averaging is only done in one dimension,

along the CULPIS profile ground track. In reality, a larger footprint would average over a 2D surface

area that would not have a radially-symmetric height distribution. Finally, throughout these simulations,

the CULPIS freeboard elevation profile is taken to be the “true” surface height, which is not exactly the

case since the “true“ surface has been convolved with the CULPIS footprint and its own impulse response

function. Despite these limitations, it is believed that the simulations are a useful method to illustrate the

affect that larger measurement footprints have on measuring Arctic sea ice ridging characteristics. Although

the methodology could be improved, the material in this section provides considerable insight and offers

potential for further development and investigative studies.

The simulated surface elevation profiles for 10 m and 70 m measurement footprint diameters are

presented in Figure 6.11. This is the same section of data from CASIE flight 9 that is shown in Figure

6.7. The data shown in black are the native CULPIS freeboard heights, the data in green are the spatially-

averaged, simulated heights, and the red points show the detected ridge peaks. As previously discussed,



www.manaraa.com

117

the ridge detection methodology has its own limitations, but has been found to work sufficiently well (i.e.

capable of detecting ridge height and ridge separation distributions that agree to within 5% of the theoretical

distributions). The simulation was also carried out for footprints with a diameter of 20, 30, 40, 50, and 60

m, but the elevation profiles are not presented here. Notice that larger footprints provide measurements that

indicate an overall smoother surface with considerably smaller ridge heights.

The CASIE flight 9 ridge height and ridge separation PDFs for the 10 m and 70 m simulated footprint

measurements are shown in Figure 6.12, along with the theoretical distributions (described by Equations

6.2 and 6.3) for the “true” mean ridge height of 1.05 m and the mean ridge separation of 166.3 m that

were observed by the CULPIS. The difference between the simulated ridge heights and separations and

the theoretical “true” ridge heights and separations (simulation value minus theoretical value) for all the

simulated footprint sizes are shown in Figure 6.13. Within each height and separation bin, the gray-scale

colors correspond to the simulated footprint size.

Figures 6.12 and 6.13 clearly indicate that larger footprints bias the ridge observations toward smaller,

farther spaced ridges. The simulated footprint sizes overestimate the percentage of ridges with heights ranging

from 0.6-0.9 m by approximately 25-40%, and underestimate the percentage of ridges with heights greater

than 0.9 m by as much as nearly 15%. Additionally, the simulated footprints underestimate the percentage

of ridges with separations less than 400 m by upwards of 10% for the shortest separation bins, and the

simulations overestimate the percentage of ridges by 1-2% for almost all separation bins greater than 400 m.

Not only does the measurement footprint size modify the ridge height and separation PDFs, but it

reduces the total number of ridges detected. As shown in Table 6.1, 4145 ridges were detected in the native

CULPIS freeboard elevation data collected during CASIE flight 9. In the simulated elevation data that

represents a footprint diameter of 10 m, 2422 ridges were detected, which is a 41.6% reduction relative to the

“true” number of ridges detected in the native CULPIS data. Furthermore, only 661 ridges were detected

in the 70 m footprint simulated elevation data, which is a 84.1% reduction relative to the actual number of

ridges in the dataset. It is clearly evident that larger measurement footprints have a dramatic effect on the

ability to detect sea ice ridge characteristics; however, the running average simulation method implemented

here does not alter the overall observed mean ice thickness.
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Figure 6.11: A section of CASIE flight 9 freeboard surface height data (shown in black), the simulated
elevation profiles that would be observed from two altimeter systems with larger footprints (shown in green),
and the resulting ridge peak detection (shown in red). This is the same section of data presented in Figure
6.7. The native CULPIS freeboard surface height data are smoothed using continuous 10 m (top plot) and
70 m (bottom plot) window-size running averages.

Table 6.1: The total number of sea ice ridges detected in CASIE flight simulated freeboard elevation data
representing various footprint measurement sizes, along with the percent reduction in the number of detected
ridges relative to the “true” number of ridges detected in the native CULPIS data, which is 4145 ridges.

footprint diameter [m] ridges count [#] percent reduction [%]
10 2422 41.6
20 1654 60.1
30 1261 69.6
40 1001 75.9
50 837 79.8
60 749 81.9
70 661 84.1
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Figure 6.12: CASIE flight 9 sea ice ridge height and ridge separation distributions for simulated surface
profile data representing 10 m and 70 m laser footprints. The simulated mean ridge heights are 0.93 m
and 0.78 m, and the mean ridge separations are 284.7 m and 1024.4 m. The “true” mean ridge height and
separation are 1.05 m and 166.3 m, where the CULPIS observations presented in Figure 6.8 are taken to be
truth. The black curves shown here depict the theoretical distributions, described by Equations 6.2 and 6.3,
for the “true” mean height and separation.

Figure 6.13: CASIE flight 9 sea ice ridge height and ridge separation distribution error relative to the
theoretical distributions that represent the “true” CULPIS observations for simulated surface profile data of
10, 20, 30, 40, 50, 60, and 70 m laser footprints. The theoretical distributions are described by Equations 6.2
and 6.3, and are presented in Figure 6.8 for the “true” mean ridge height and separation of 1.05 m and 166.3
m, as measured by the CULPIS. It is evident that larger laser footprint sizes bias the distribution toward
smaller, further spaced ridges.
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A final method for examining the observational limitations imposed by larger measurement footprints

is through a FFT analysis, which by its nature highlights the impact on the detected surface structure

frequency, or periodicity in this case, where periodicity is equal to the inverse of frequency. To investigate

this impact, a 10 km section of CASIE flight 9 freeboard elevation data was randomly chosen and used

to simulate 10 m and 70 m footprint measurements. The surface structure periodicity was then computed

using a FFT for the native CULPIS elevation data and the two simulated elevation datasets. Finally,

the simulated surface periodicity spectra were subtracted from the native “true” surface spectra show the

difference imposed by the larger measurement footprints. The results of this investigation are shown in

Figure 6.14. The top plot shows the native and the two simulated freeboard elevation profiles. The middle

plot shows the corresponding surface periodicity that is resolved by the three profile datasets. The bottom

plot shows the difference between the “true” and the two simulated periodicity spectra.

As shown in the bottom plot of Figure 6.14, the simulated surface spectra have lesser amplitude (i.e.

highest difference) at shorter periodicities than the spectra of the native CULPIS surface profile. The 10 m

footprint spectra shows large difference errors for periodicities less than 50 meters/cycle (i.e. for elevation

features with 50 m spacing), and the 70 m footprint spectra shows large difference errors for periodicities

less than 200 meters/cycle (i.e. for elevation features with 200 m spacing). In effect, these values indicate

the surface structure length-scales which are not accurately resolved by larger measurement footprints.

It is important to note that the FFT analysis is somewhat different than the ridge separation analysis

in that it utilizes the full freeboard elevation dataset, which includes the fine-scale structure as well as the

large ridge structure. It is evident that the dominant elevation features have spatial separations ranging

between approximately 150-200 meters, as indicated by the high spectral power at these periodicities in

the center plot of Figure 6.14. This agrees well with the mean ridge spacing of 166.3 m. It also should be

noted that the sea ice surface FFT spectra shown in Figure 6.14 have high power at shorter periodicities

(<150 meters/cycle), whereas the aircraft attitude FFT computed using data representative of nominal

science mission flights (i.e. mostly straight and level flight, see Figure 5.5) was shown to have high power

at relatively long periodicities (>150 meters/cycle). This supports the notion that the IMU measurement

error adds minimal error to the CULPIS surface elevation measurements over relatively short distances.
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Figure 6.14: CASIE flight 9 surface FFT spectral power and error for simulated profile data. The top plot
shows the native CULPIS surface profile data (black), and simulated profile data for 10 m (red) and 70 m
(green) laser footprints. The center plot shows the FFT spectra of these three profile datasets. The bottom
plot shows the difference between the simulated FTT spectra and the “true” CULPIS FFT spectra (“truth”
minus simulation). The different plot indicates that a 10 m footprint will have considerable error observing
elevation features with a periodicity (i.e. spacing) less than 50 m, and a 70 m footprint will have error
observing elevation features with a periodicity less than 200 m.
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Chapter 7

Summary

In recent years, the Arctic has experienced a dramatic reduction in the overall extent of summertime

sea ice, and the remaining ice is transitioning from a thick perennial ice pack with a large fraction of old mul-

tiyear ice, to a thinner seasonal ice pack consisting primarily of first- and second-year ice. These dramatic

changes not only have implications for the persistence and survivability of sea ice and feedback mecha-

nisms affecting climate change, but also have implications for socially relevant issues, such as international

commerce and resource exploration [15, 60].

The changes occurring to the Arctic sea ice manifest themselves in the physical characteristic of the

ice. As the ice becomes younger and thinner, there are changes in ice thickness, roughness and ridging

features. This research has focused on assessing the ability of the CULPIS laser altimetry system to collect

quality ice topography data from UAS, and demonstrates that UAS remote sensing technologies can improve

our capabilities to monitor the state and evolution of the Arctic sea ice.

The CULPIS is as a robust, lightweight, inexpensive instrument package that was developed to collect

land ice and sea ice surface elevation and imagery from small UAS [20, 25, 107]. The primary components

are a laser, IMU, GPS module, still and video cameras, and power regulation and C&DH systems. The

C&DH system controls the various instruments and accurately timestamps the data to yield synchronized

co-located topography and imagery data. It is a 12W system with a mass and volume of roughly 1.7 kg and

2560 cm3, and which costs approximately $5100 USD. When flown at 30 m/s and 100 m AGL, it provides

surface elevation measurements with an along-track spacing of 7.5 cm and a 30 cm diameter ground footprint.

From this altitude the cameras provide imagery with sub-decimeter-level resolution. With its accurate time
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stamping and laser profiling capabilities, it is considered to be an advancement over past UAS cryospheric

observation payloads, such as that discussed in Inoue et al.[58], which consisted primarily of a still cameras

and meteorological sensors.

The CULPIS has been integrated into four UAS platforms; the BAE Systems Manta, the NASA

SIERRA, the AAI Aerosonde, and the University of Alaska’s Insitu ScanEagle. Three of these UAS have

been deployed operationally to make land and sea ice observations. In July 2008 the Manta was flown

out of Ilulissat, Greenland to measure ice sheet surface characteristics in the vicinity of supraglacial melt

lakes as part of the NOAA MUSCOX project. Data collected during this campaign were used to generate a

fine-resolution DEM of the ice surface. In July 2009 the SIERRA was flown out of Ny-Ålesund, Svalbard to

measure sea ice properties in Fram Strait as part of the NASA CASIE project. The observations collected

during CASIE are the primary focus of this research. Finally, in September and October 2009 the CULPIS

was flown onboard the Aerosonde to map sea ice topography and wave heights in the Southern Ocean between

McMurdo and Terra Nova Bay, Antarctica as part of the NSF TNB UAS project [13]. The CULPIS has also

been integrated into the ScanEagle UAS and is currently available for scientific investigations.

The wide array of UAS into which the CULPIS has been integrated over a relatively short period of

time, and the campaigns which have been completed, demonstrates the systems versatility and reproducibil-

ity, as well as the utility of UAS to provide coincident, synchronized, multi-sensor measurements in polar

environments. Rapid availability, ease of instrument integration, and the potential for relatively minimal

logistical requirements are additional features that make UAS an attractive method for collecting geophysical

data. Additionally, UAS are well suited for surface topography mapping since they generally have slower

flight speeds than manned aircraft, and it is justifiable to take greater risk with UAS. As such, they can

be flown at lower altitude, thereby reducing the measurement error and yielding finer spatial resolution.

These capabilities highlight the potential for UAS to provide widely distributed polar elevation observations

which may be leveraged to augment manned-aircraft and spaceborne efforts to monitor the variability and

evolution of land ice and sea ice.

The operational performance of the CULPIS was assessed by comparing flight-based elevation profiles

to “truth” ground-based runway surveys. The absolute measurement error was determined to be 95±25
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cm, and the measurement precision was determined to be 7 cm for short segments of data less than 200

m in length. The absolute accuracy is primarily limited by relatively low-frequency L1 dGPS positioning

uncertainties stemming from ionospheric and tropospheric signal propagation errors, which are on the order

of 50±25 cm. This error can likely be reduced to ∼15 cm by implementing a L1/L2 GPS receiver that

will make it possible to eliminate the ionospheric error. By modeling the tropospheric error it may be

possible to reduce the total GPS error to <10 cm. The IMU angular determination and sensor misalignment

uncertainties of 1◦ each contribute 17 cm of error given a 5◦ off-horizontal attitude angle and a 100 m

AGL flight altitude. The error introduced by the horizontal lever-arm offset between the GPS antenna and

laser is ∼5 cm given a 20 cm offset and 5◦ attitude angle. The IMU, misalignment, and lever-arm errors

can be reduced considerably (i.e. combined total of .10 cm) by implementing a higher-quality IMU, by

flying lower, and by accurately measuring the senor alignments and offsets. Errors stemming from the GPS

reference station positioning, the laser range measurement, data interpolation, and timing latency contribute

the least amount of error, with a combined total of ∼5 cm. Currently, the CULPIS is not suited for measuring

ice sheet elevation change; however, it is expected that by performing the suggested improvements, the total

absolute measurement error can be reduced to .20 cm, which will lend itself for ice sheet change detection.

With the current implementation the CULPIS does provide high-precision measurements over short

distances. A variogram analysis of the error suggests that over a distance of 200 m the total system precision is

<10 cm, with the GPS precision being ∼4 cm, and the remaining sensor error being ∼3 cm. As such, relative

height differences can be computed with high precision over short distances, which is needed for measurements

of sea ice freeboard, roughness, and ridging. Given the high measurement precision, it was possible to derive

ridge height and ridge separation distributions that are within 5% of the theoretical distributions. Finally,

the necessity of fine-resolution topography measurements was demonstrated by simulating observations that

would be collected with larger altimeter footprint sizes. Footprint diameters of 10-70 m reduced the total

number of ridges detected by 40-85% and biased the ridge distributions toward smaller, further spaced ridges.

The number of ridges with heights ranging from 0.6-0.9 meters were overestimated by up to almost 45%, and

ridges with a separation less than 400 m were underestimated by up to 10%. Furthermore, surfaec roughness

features with a periodicity less than 50 m/cycle are substantially unresolved by 10 m footprints, and roughness
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features with a periodicity less than 200 m/cycle are substantially unresolved by 70 m footprints.

This research has shown an integration between science and technology by demonstrating the ability

to observe geophysical phenomena which are of great interest to the scientific community and commercial

industries by synthesizing new and improved technologies. Measurements of ice freeboard, roughness, and

ridging have been made for the first time using a laser altimeter system flown on small UAS. The measure-

ments are fine-resolution and high-quality, which make them suitable for calibrating and validating satellite

observations and sea ice models. Additionally, the CULPIS and UAS are ideal for collecting timely obser-

vations of sea ice conditions to facilitate safe shipping and resource exploration operations in the Arctic. In

conclusion, it has been shown that a relatively inexpensive laser altimeter system can be flown on UAS over

broad regions in polar environments to collect fine-resolution surface elevation data which are pertinent for

assessing the state of sea ice conditions, and which have sufficient quality to meet the requirements of the

scientific community. These systems have the ability to augment current airborne and spaceborne obser-

vations and have the potential to provide widely-distributed, multi-sensor, synchronized measurements to

enhance future investigations of Arctic sea ice.
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Appendix A

Acronyms

2D Two Dimensional

3D Three Dimensional

AES Aerospace Engineering Sciences

AGL Above Ground Level

AMAP Arctic Monitoring and Assessment Programme

AOL Airborne Oceanographic Lidar

AON Arctic Observing Network

APPS Automatic Precise Positioning Service

ATM Airborne Topographic Mapper

BT Brightness Temperature

C/A Course/Acquisition

CASIE Characterization of Arctic Sea Ice Experiment

C&DH Command and Data Handling

CDP Carrier-phase Differential Positioning

COG Course Over Ground

COTS Commercial Off-The-Shelf

CU University of Colorado at Boulder

CULPIS CU Laser Profilometer and Imaging System

DEM Digital Elevation Model
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dGPS differential GPS

DOP Dilution Of Precision

ECEF Earth Centered, Earth Fixed

ENV East, North, Vertical

ESA European Space Agency

FFT Fast Fourier Transform

GCS Ground Control Station

GLAS Geoscience Laser Altimeter System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HDOP Horizontal Dilution of Precision

IGS International GNSS Service

IMU Inertial Measurement Unit

JPL Jet Propulsion Laboratory

KAR Kinematic Ambiguity Resolution

L1 Link 1

L2 Link 2

LALE Low Altitude, Long Endurance

LIDAR LIght Detecting and Ranging

LVIS Land, Vegetation, and Ice Sensor

MEMS MicroElectroMechanical Sensor

MODIS Moderate Resolution Imaging Spectroradiometer

MUSCOX MUlti-Sensor Cryospheric Observation eXperiment

NASA National Aeronautics and Space Administration

NAVOCEANO Naval Oceanographic Office

NEU North, East, Up (same as ENV)

NOAA National Oceanic and Atmospheric Administration
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NSF National Science Foundation

NSIDC National Snow and Ice Data Center

PCB Printed Circuit Board

PDF Probability Density Function

PDOP Position Dilution of Precision

PPM Parts Per Million

PPP Precise Point Positioning

PRF Pulse Repetition Frequency

RECUV Research and Engineering Center for Unmanned Vehicles

RMS Root-Mean-Square

RS Reference Stations

RSS Root Sum of the Squares

SAR Synthetic Aperture Radar

sGPS standard GPS

SIERRA Science Instrumentation Environmental Remote Research Aircraft

SSII Superstar II

TEC Total Electron Content

TNB Terra Nova Bay

UAS Unmanned Aircraft Systems

ULS Universal Laser System

USD United States Dollar

UTC Coordinated Universal Time

VDOP Vertical Dilution of Precision
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CULPIS Component Specifications

All specification based on data gathered in spring 2010

Refer to Table 2.1 for power, mass, volume, and cost specifications

Laser Rangefinder (LIDAR Unit)

Function: Measures the distance from the laser optics processing head to the ground surface and the laser
pulse return power.

Manufacturer: Laser Technology, Inc.
Model: Universal Laser System (ULS)
Wavelength: 905 nm (IR)
Beam Divergence: 3 mrad (∼30 cm diameter footprint at 100 m range)
Pulse Rate: 10-5000 Hz, configurable
Measurement Rate: 400 Hz nominal, 2000 Hz maximum, configurable measurement modes
Data Rate: 16.6 MB/h
Maximum Range: 500 m (over nominal ice targets)
Output Power: 100, 200, or 400 nJ per pulse, configureable
Eye Safety: Class 1, 7 mm eye safe (FDA, CFR21)
Accuracy: ±2 cm
Resolution: 1 mm
Dimensions: 14.3 x 12 x 6.3 cm

Inertial Measurement Unit (IMU)

Function: Measures the aircraft attitude (roll, pitch, and yaw) to correct the laser range and surface
measurement location for off-nadir pointing.

Manufacturer: Microstrain, Inc.
Model: 3DM-GX1 (alternate models include the 3DM and 3DM-G, specifications not provided here)
Sensor Overview: A MEMS system that combines three angular rate gyroscopes with three orthogonal

accelerometers and magnetometers.
Measurement Rate: 100 Hz
Data Rate: 13.2 MB/h
Gyro Rate: 300◦/s
Accuracy: 0.5◦ (static), 2◦ (dynamic)
Dimensions: 9 x 6.5 x 2.5 cm
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GPS Receiver

Function: Measures the aircraft horizontal and vertical position in the WGS84 ellipsoid.
Manufacturer: NovAtel, Inc.
Model: Superstar II (SSII; no longer in production)
Measurement Type: single frequency C/A code pseudorange and L1 carrier-phase
Measurement Rate: 1-10 Hz
Data Rate: 5.5 MB/h (for 10 Hz measurement rate)
Measurement Precision: 1 cm RMS (L1 carrier-phase)
Interface: The GPS receiver is connected to the C&DH PCB via a custom communications PCB that was

developed by the University of Colorado, AES.
Dimensions: 9 x 4.6 x 1.5 cm

GPS Antenna

Manufacturer: Antcom Corporation
Model: 3G15A-XT-1
Frequency: L1
Low Noise Amplifier Gain: 33 dB
Dimensions: 1.8 cm (height) x 8.9 cm (diameter)

Digital Still Camera

Function: Provide continuous fine-resolution imagery coincident with the laser elevation measurements.
Manufacturer: Canon
Model: PowerShot G10 (alternate models include the PowerShot SX100 IS and SX110 IS, specifications

not provided here)
Resolution: 14.7 megapixels, 4416 x 3312 pixels
Field of View: 65◦ x 50◦

Shutter Controller: The timing of the shutter trigger is controlled by the URBI Camera Control
manufactured by Blip, It Pty Ltd.

Data Rate: 2.6 GB/h when photos are taken at 5 second intervals.
Data Storage: Still photos are stored on the camera’s SD card. A 32 GB SD card will provide enough

storage for ∼12 hours worth of photos taken at 5 second intervals, which is sufficient to provide
continual ground coverage at 200 m AGL and 30 m/s.

Voltage: The camera is supplied 7.4V by passing 12V from the power regulation PCB through an
adjustable voltage regulator manufactured by Blip.

Camera Dimensions: 11 x 7 x 5 cm
URBI Dimensions: 4 x 5.5x 1.2 cm

Digital Video Camera

Function: Provide fine-resolution HD video coincident with the laser elevation measurements.
Manufacturer: Aiptek
Model: A-HD+ 1080P (alternate models include the A-HD 720P, specifications not provided here)
Resolution: 1440 x 1080 pixels at 30 f/s (1080P) or 1280 x 720 pixels at 60 f/s (720P)
Data Rate: 3 GB/h for 1080P HD video data.
Data Storage: Video files are stored on the camera’s SD card. A 32 GB SD card will provide enough

storage for ∼10.6 hours worth of 1080P video data.
Dimensions: 12 x 7.5 x 3.5 cm
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Command and Data Handling (C&DH) PCB

Function: Control, timestamp, and log the laser, IMU, and GPS data. Trigger the still camera and record
the trigger time.

Manufacturer: University of Colorado, AES
Data Storage: The data is logged and stored on a microSD card using a Gumstix Pro XM4 linux

microcomputer. A 1 GB microSD card will provide enough storage for approximately 20 hours
worth of data.

Additional Functionality: Records temperature and barometric pressure data, available digital and
analog communications ports for interfacing with additional peripheral devices.

Dimensions: 14 x 7.7 x 2 cm

Power Regulation PCB

Function: Supply conditioned power to the various instruments at their required voltage from a single
input power source.

Manufacturer: University of Colorado, AES
Input Voltage: 8-40V DC (12V nominal)
Output Voltage: 3.3V, 5V, 9V, and 12V DC
Power Efficiency: η = 93%
Dimensions: 14 x 7.7 x 2 cm
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Still Camera Shutter Trigger Timing Derivation

The derivation presented here yields Equation C.5, which specifies the time separation that is required

to achieve a desired overlap between consecutive pictures.

Figure C.1: Parameters relevant to the still camera trigger timing derivation.

D = along-track distance between origin of consecutive photos, [m]

V = aircraft velocity (speed), [m/s]

t = still camera shutter trigger timing separation, [s]

FP = along-track photo footprint extent, [m]

H = height above ground surface, [m]

FOV = camera along-track field-of-view, [deg]

O = consecutive photo overlap, [m]

OP = consecutive photo overlap percentage, [1-100%]



www.manaraa.com

141

D = V ∗t (C.1)
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CULPIS Derivative Configurations: CULPIS-X and Moulin Probe

The CULPIS-X and the moulin probe, shown in Figure D.1, are two instrument packages that are

derived from the CULPIS components. The CULPIS-X consists of all the CULPIS instrumentation, with

the addition of a pyrometer and spectrometer. It has been configured to slide into the flare tube of a US

Coast Guard C-130 manned aircraft. An upgraded version of the one pictured here will be operated during

flights-of-opportunity in support of NASA’s IceBridge program to make land and sea ice surface topography

measurements. The moulin probe is a cylindrical package that is lowered into the depths of moulins on the

Greenland ice sheet. The probe is rotated as it is lowered, and the ULS and IMU are used to measure the

pointing angle and the range to the moulin wall. From these data it is possible to reconstruct the 3D inner

structure of the moulin and monitor its changes over time [108].
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Appendix E

MUSCOX Example Hyperspectral Imagery

Figure E.1: Greenland ice surface spectra collected during MUSCOX with the Resonon hyperspectral camera.
The spectra shown are taken at the intersection of the red lines. The bottom spectra, taken over bright ice,
has a high peak in the red band, unlike the top spectra taken over dark ice. These data are peripheral to this
dissertation research, but were investigated as part of Francesca Lettang’s Masters thesis, and are presented
to further illustrate the types of data that can be collected from UAS.
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Appendix F

CULPIS Laser Interference Testing

With the desire to have two ULS units operating simultaneously for the CASIE mission it was im-

perative to assess the potential of interference. Since the two ULS operate at the same wavelength, it is

possible for one unit to detect the pulse transmitted by another unit. This acts as a false-positive signal

at an incorrect time, and results in an inaccurate, erroneous range measurement. To test for interference

and characterize its signal, two ULS were pointed toward a wall ∼29 m away and aligned to desired angular

offsets using a pair of protractors printed onto paper. The protractor alignment paper and the dual ULS

testing setup are pictured in Figure F.1. Data was collected for approximately 3 minutes during each test,

during which time I walked back-and-forth in front of the wall one time to act as a ranging signal.

Range measurements collected during two tests done with different offset angles are shown in Figure

F.2. The data on left were collected with a 0◦ offset (parallel alignment) and the data on right were collected

with a 3◦ offset. As shown in the top left panel, erroneous range measurements are detected by ULS 1 when

the two units are aligned nearly parallel, whereas the range data are a clean and consistent ∼29 m for the

3◦ offset test (top right panel). The two bottom panels of Figure F.2 show closeup views of the data as I

walked in front of the target wall. During the 0◦ test my range signal is detected by both ULS at nearly the

same time, confirming their parallel alignment, and interference noise is evident for ULS 1. During the 3◦

test my range signal is detected by both ULS at different times due to their angular offset, and interference

noise is not present. These tests confirmed that interference would likely not occur during CASIE, where

a 15◦ offset was desired, and if interference did occur it would be possible to recognize its signature in the

range data.
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CULPIS ScanEagle Launch Testing

To ensure the CULPIS is able to withstand the 8+ G acceleration forces associated with the pneumatic

launch [communication with Greg Walker], the payload underwent extensive testing at Hood Technology,

Inc. on 8 April 2009. These testing efforts were a collaboration between the University of Colorado, the

University of Alaska, American Aerospace Engineering, based out of White Salmon, Washington, and Hood

Technology, Inc. located in Hood River, Oregon. Thanks are extended to Greg Walker, Mike Bartlett, Ben

Cryder, Bill Bradley, Cory Roeseler, Mark Napier, and James Kreiser for their involvement with the CULPIS

ScanEagle launch testing. The test unit consisted of a the CULPIS payload bay attached to a ScanEagle

fuselage with the wings removed. To simulate normal payload operation, a battery pack was used to provide

12V of power to the CULPIS unit. The launcher was a newly-manufactured Hood Technology Soft-Start

Superwedge. The test unit was mounted to an overhead assembly riding on an angled steel cable with cinch

straps. At a distance from the launcher, a collar and strap system were used to slow the overhead assembly

and test unit post launch. The testing launch assembly setup is shown in Figure G.1 and the results of each

test are provided in Table G.1.

The maximum expected launch speed of a ScanEagle with a Superwedge launcher is 30 m/s [commu-

nication with Cory Roeseler]. Numerous zip line tests exceeded that launch speed (maximum tested launch

speed was 34 m/s) and the CULPIS payload unit remained structurally intact and continued to function

during and after the testing periods. However, during a few of the tests the payload lost power and ceased

operation because the battery was drained. There was not sufficient time to recharge the battery after each

testing period, so two of the test were done without powering on the payload and were focused on assessing
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Figure G.1: The ScanEagle zip line testing setup and equipment. The ScanEagle CULPIS instrument
package, shown on top left, is mounted in a mock ScanEagle fuselage and hung from a taught cable, shown
on top right, and launched using a pneumatic catapult, shown in the bottom figure.
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Table G.1: The ScanEagle zip line testing results, provided here, indicate that the CULPIS payload is
structurally able to withstand the ScanEagle launch forces.

Launch Launch Launch
Time Pressure Speed

Test [local] [psi] [m/s] Notes
1 10:41 31 19.6 all systems functioning
2 11:11 40 23.0 all systems functioning
3 11:26 47 25.0 see Notes A & B
4 12:56 56 28.6 all systems functioning
5 13:15 64 30.3 all systems functioning
6 13:35 70 N/A see Note C
7 13:44 70 31.6 see Note A
8 14:46 75 33.0 see Note A
9 14:58 80 33.8 see Note D
10 15:11 79 34.0 see Note D
11 15:21 80 33.9 all systems functioning

Note A: Power loss from drained battery.
Note B: Still camera power cord became disconnected.
Note C: Disconnected launcher circuitry, no speed displayed.
Note D: Structural test only, CULPIS not powered on.
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the payload’s structural durability. During normal operation the payload will receive power directly from

the aircraft generator, and thus the power loss from the drained battery was determined to be an issue of

no concern.

The zip-line test results validated the ability of the CULPIS ScanEagle payload to survive the launch

acceleration forces, but also highlighted a few other issues that required attention. During one of the

tests the still camera power cable became disconnected, identifying the need to securely adhere all wiring

harness and instrument connections. Discussion also led to the realization that the payload power supply

from the ScanEagle generator could potentially glitch and drop below the 12V operating voltage, which

would terminate the functionality of the cameras for the remainder of the flight. Additionally, upon aircraft

recovery with the tether-line capture method, the aircraft is immediately powered off, thus killing power to

the payload. When this occurs the video camera is not properly cycled through its power-down routine and

the video data file is not closed properly, leading to a corrupt file and loss of all video data.

To prevent these two power-failure situations from occurring, the primary UAS payload power supply

(aircraft generator) and a 12V standby battery are passed through silicon diodes and then connected in

parallel to create a switchover circuit. In this manner, if the primary power is interrupted, the payload will

draw power from the standby battery for the time being. Finally, vibration-dampening clips will replace the

standard connectors used to attach the payload bay to the fuselage, and a padding material will be placed

between the payload bay and the fuselage bulkheads to dampen vibration in order to minimize image blur

and long-term structural fatigue.
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GPS Reference Station Positioning

The CASIE CU GPS reference station (RS), NYCU, and its environmental surroundings are shown

in Figure H.1. The main visibility obstructions and multipath sources are large mountains on one side, and

several buildings and a gravel roadway that saw limited traffic on the opposing side. Several methods for

accurately positioning NYCU were examined, and the results of those tests are summarized in Table H.1 and

Figure H.2. The best positioning results (lowest vertical and horizontal standard deviations) are obtained

by carrier phase differential positioning with one RS using a 30 second measurement rate, and filtering the

data based on the root sum of the position offsets squared (RRS, Equation H.1).

RSS =
[
(E − Emean)

2
+ (N −Nmean)

2
+ (V − Vmean)

2
]1/2

(H.1)

The final method used to position NYCU is outlined below, and the position variability is summarized

by Table H.2 and Figure H.3. The same method was used to position the ILCU station, and similar

positioning statistics were achieved.

Table H.1: The CASIE NYCU GPS positioning statistics for various processing methodologies. Precise point
positioning (PPP) and carrier phase differential positioning (CDP) using various data rates and reference
stations were analyzed. The best results are provided by 30 sec CDP with one RS.

stdev E stdev N stdev V
dataset corresponding to Figure H.2 [cm] [cm] [cm]
PPP 30 sec, 0 RS (green)∗ 0.07 0.04 0.08
CDP 30 sec, 2 RS (blue)∗ 8.38 3.63 8.12
CDP 30 sec, 1 RS (red) 0.02 0.02 0.02
CDP 0.1 sec, 1 RS (black) 1.97 3.19 13.64
CDP 10 sec, 1 RS (cyan) 0.76 0.91 2.71

∗horizontal (E and N) positions not shown in Figure H.2.
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Figure H.1: The CASIE NYCU temporary GPS reference station environmental surroundings. The GPS
station was located in the vicinity of large mountains, several buildings, and a gravel roadway that saw
limited traffic.
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Table H.2: The CASIE NYCU GPS reference station final positioning statistics for 11-31 July 2009. The
data retained after the first and second filters (shown in red) was used to compute the final position of the
NYCU station.

stdev E stdev N stdev V
dataset corresponding to Figure H.3 % of total data [mm] [mm] [mm]
all data (black, cyan, red) 100 1.5 2.1 3.5
data retained after 1st filter (cyan, red) 87 0.5 0.8 1.2
data retained after 2nd filter (red)∗ 63 0.5 0.3 0.7

∗Mean (Final) Position
latitude: 78.930852949 N
longitude: 11.853503732 E
WGS84 ellipsoidal height: 73.085 m

The Final method used to position the ILCU and NYCU GPS reference stations:

• Accumulate all data collected throughout deployment

MUSCOX: 6-24 July 2008

CASIE: 11-31 July 2009

• Subsample the data to a 30 second measuremnt rate

• Perform dual frequency, carrier phase, differential positioning using a single permanent reference
station1 (no tropospheric corrections)

MUSCOX: KAGA - 49.4 km from ILCU

CASIE: NYA1 - 292 km from NYCU

• Compute east (E), north (N), and vertical (V) offsets from the mean position

• Compute the 3D RSS, as shown by Equation H.1

• Remove data outside of 1 RSS value (filter 1)

• Compute new RSS

• Remove data outside of 1 RSS value (filter 2)

• Compute the mean of the remaining data

Both the MUSCOX and CASIE final CU reference station positions were computed using RSS method

with very-short baseline dGPS data collected throughout the full deployment periods. To determine the

relative quality of this method, the CU station positions were also computed using the JPL online APPS

with data collected during the runway survey times specified in Table 5.4 on page 60. The positions, and their

differences, derived using these two methods are shown in Table H.3. The position differences range between

approximately 5 cm and 180 cm, and show better agreement for the MUSCOX data. Due to the considerably

1 The permanent monument GPS data were obtained from UNAVCO.
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Table H.3: CU reference station positioning comparison between the RSS and JPL online service processing
results. Coordinates are reported in the ITRF05 reference frame.

station direction RSS method JPL service relative offset [cm]
N 69◦ 14’ 30.33413” 69◦ 14’ 30.33593” 5.6

ILCU E -51◦ 03’ 46.86773” -51◦ 03’ 46.88046” 13.9
U 55.823 m 56.018 m 19.5
N 78◦ 55’ 51.07071” 78◦ 55’ 51.08297” 37.9

NYCU E 11◦ 51’ 12.61335” 11◦ 51’ 12.66181” 28.7
U 73.102 m 71.302 m 180.0

longer data set used in the RSS computations versus the JPL computations (approximately 30 days of data

versus 10 minutes of data), the RSS positions are considered to be more robust and were chosen as the final

CU reference station positions used in all further dGPS processing of CULPIS data. Absolute error in the

refrence station positions will translate directly to errors in the CULPIS dGPS positions; however, these

absolute errors will not affect relative positions and the derived ice topography parameters.
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Appendix I

GPS Fundamentals

The purpose of this appendix is to review GPS positioning fundamentals such that the reader is familiar

with the basic methodology, terminology, and mathematics. This information is particularly relevant in the

assessments of the CULPIS GPS error discussed in Section 5.3.3. The material and formulations presented

here have been adapted from Blewitt[9] and Misra and Enge[90]. Readers are referred to those sources for a

more comprehensive discussion.

GPS positioning is based on trilateration, which is the method of determining position by measuring

distances to points at known coordinates. This is similar in concept to 2D triangulation, but is done in 3D

space. Each GPS satellite transmits two encoded signal toward Earth, which consists of a carrier signal that

is modulated with ranging codes and a navigation message. The two carrier signals, referred to as L1 and

L2, are in the L-band, and have frequencies of:

L1: fL1 = 1575.42 MHZ, and L2: fL2 = 1227.60 MHz.

The L1 signal carries the C/A ranging code, an encrypted P(Y) ranging code, and the navigation

message. The L2 signal carries only an encrypted P(Y) code. The decryption key for P(Y) codes is typically

only available for military applications, and as such, these codes are not utilized by the general public, or

within this research. The transmission time of the C/A code is encoded on the signal, and is based on an

atomic clock onboard the satellite. The signal reception time is computed by the receiver, which typically

use quartz-oscillator timing elements, and then the signal travel time (i.e. difference between transmit and

receive times) can be used to calculate the range to the satellite. This range is referred to as pseudorange
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because it includes clock errors (primarily receiver clock errors) and signal propagation errors, as discussed

further below.

The navigation message contains, among other information, satellite atomic clock correction terms

and orbital parameter terms, know as the broadcast ephemeris. These values are used in real-time by the

receiver to correct the satellite clock error and to determine the (x, y, z) position of each satellite in the

WGS84 earth-centered, earth-fixed (ECEF) coordinate frame. With the known reference positions of each

satellite, the pseudoranges can then be used to trilaterate the receiver position and compute the clock bias

using the formulations presented below. With four unknowns (receiver x,y,z and clock bias), four satellites

must be visible to the receiver. It is important to note that improved, “precise” satellite clock corrections and

orbit ephemerides are derived by institutions such as the International Global Navigation Satellite System

(GNSS) Service (IGS) and the NASA JPL that are available at a somewhat delayed time for post-processing

positioning. These precise ephemerides and clock corrections are implemented by the Waypoint software,

and have been utilized in the processing of all GPS data collected as part of this research.

The pseudorange and carrier phase measurement models are shown as Equations I.1 & I.2. Each

term is expressed in units of distance, typically meters, the superscript (k) indicates that the equation is

formulated for all k number of visible satellites, and the subscripts ρ and φ indicate that these terms are

frequency dependent and have differing behavior and magnitudes for the code and carrier measurements.

The modeled pseudorange and carrier-range (the product λφ) are equal to the geometric range between

the user’s receiver and the satellite’s transmitter, plus errors associated with signal timing and propagation

through the space, atmosphere, and local environments. Carrier phase ranging is similar in theory to code

ranging, but rather than tracking the C/A code, the phase of the received signal is tracked. Carrier tracking

yields considerably higher ranging precision since the phase provides a much finner tracking scale than the

code (L1 carrier wavelength of ∼19 cm versus the C/A code chip length of 300 m). However, an increased

complication arises because the phase measurement is ambiguous. The total number of cycles the wave has

traveled before before being received is not known, which introduces an additional phase ambiguity variable,

N , that must be solved for in Equation I.2.
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ρ(k) = r(k) + c
(
δtu − δt(k)

)
+ I(k)ρ + T (k)

ρ +M (k)
ρ + ε(k)ρ (I.1)

λφ(k) = r(k) + c
(
δtu − δt(k)

)
− I(k)φ + T

(k)
φ +M

(k)
φ + λN (k) + ε

(k)
φ (I.2)

where...

ρ(k) = pseudorange

λ = carrier wavelength

φ = carrier phase

λφ = carrier-range

k = satellite ID

r = geometric range

c = free space light speed

δtu = user receiver clock error

δt(k) = satellite clock error

I = ionosphere error

T = troposphere error

M = multipath error

N = carrier phase ambiguity

ε = unmodeled error

Signal timing errors arise from bias and drift of the satellite and receiver clocks relative to truth

Coordinated Universal Time (UTC) time. The atomic clocks onboard each GPS satellite are quite stable

and their behavior is well modeled; however, inexpensive quartz-oscillators typically used for receiver timing

are relatively unstable, and thus dominate the clock error term.

Because the GPS signal does not travel through free space, transmission errors are introduced as the

signal refracts through the ionosphere and troposphere. For GPS frequencies, the dispersive characteristics
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of the ionosphere lead to a phenomenon referred to as code-carrier divergence in which the modulation

code function is delayed while the carrier phase is advanced by an equal distance. The magnitude of the

delay/advance, described by Equation I.3, is proportional to the ionosphere total electron content (TEC)

along the signal path and, is also dependent upon the signal frequency. One TEC unit is equivalent to ∼16

cm of path delay. Total ionospheric path delay errors can range from centimeters to tens of meters, and are

strongly dependent upon the ionospheric conditions.

Iρ =
40.3 · TEC

f2
(I.3)

= − Iφ

where...

TEC = total electron content

f = carrier frequency

In practice, TEC can be estimated using ionospheric numerical model assimilations, or more accu-

rately, the dispersive nature of the ionosphere can be exploited by using dual-frequency observations to

compute the code delay and carrier advance, as shown in Equations I.4 and I.5. In this study, neither of

these methods are applied because the Waypoint software was unable to ingest TEC data files, and single

frequency receivers were used during field operations. However, this research does employ differential GPS,

which, as discussed toward the end of this appendix, is another processing technique that can remove timing,

orbit, and propagation errors common to multiple receivers. The primary limitation to this method is that

as the distance increases between the various receivers used for differential positioning, the signal errors

afflicting the different receiver sites becomes less similar, and thus are not fully removed by the differencing

technique. As such, ranging errors stemming from the signal refraction through the ionosphere are not fully

accounted for and will introduce error to the UAS GPS position, and subsequently the derived ice elevations.

P3 = a · P1− b · P2 (I.4)

L3 = a · L1− b · L2 (I.5)

where...
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P1 = pseudorange on carrier 1

P2 = pseudorange on carrier 2

P3 = ionosphere-free pseudorange

L1 = carrier-range on carrier 1

L2 = carrier-range on carrier 2

L3 = ionosphere-free carrier-range

a =
f2L1

f2L1 − f2L2

b =
f2L2

f2L1 − f2L2

The troposphere is non-dispersive at the frequencies utilized by GPS, and as such, dual frequency

measurements cannot be leveraged to estimate tropospheric error; it can only be modeled. The signal

delay through the troposphere is dependent upon the air density along the transmission path, which can be

estimated using formulations based on the partial pressure of the dry and wet (i.e. water vapor) atmospheric

gas constituents, and the air temperature. Approximately 90% of the tropospheric delay is due to the dry

atmosphere, which is fortunate as it is more predictable than the water vapor content. Tropospheric errors

typically range from 2.3 - 2.6 meters at sea level, and down to around 2 meters at higher altitudes, such

as in Boulder, Colorado. The Saastamoinen model is one commonly used algorithm for estimating the

tropospheric delay. Unfortunately, the Waypoint software does not apply this, or any other tropospheric

correction methodology.

Ranging errors are also introduced by multipath, which refers to the phenomenon of a signal reaching

an antenna via two or more paths. As the signal travels through a user’s local environment it will reflect off

conductive surfaces (e.g. metal buildings, cars). The reflected signals will travel a longer distance than the

direct signal, and thus are received at delayed times. The subsequent code and carrier phase measurements

are for the sum of the received signal, and the resulting measurement error depends on the strength of the

reflected signal and the delay between the direct and reflected signals. Typical multipath error in pseudorange

measurements varies from 1-5 m, and errors in the phase measurements are typically two orders of magnitude
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smaller (1-5 cm). Additional errors also exist which require further estimation, or are simply ignored and left

unaccounted for. These include, but are not limited to, receiver noise, solid earth tides, and the remaining

orbit, timing, and propagation errors which are not fully described by their models.

For further formulation, focus will be directed to the pseudorange model and the associated code posi-

tioning methodology. The carrier positioning mathematical formulation is essentially the same, but includes

terms to account for the phase ambiguities. The modeled pseudorange equation (I.1) can be simplified by

combining the user and satellite clock error to form a combined clock bias term, and by expressing the signal

propagation error as a single accumulated error term, as shown in Equation I.6. The satellite positions are

estimated with centimeter accuracy using the precise orbital ephemeris. If the error term (ε̃
(k)
ρ ) is ignored,

it is now clear that four variables must be solved for, the user’s position (xu, yu, zu), and the clock bias (δt).

ρ(k) = r(k) + c · δt+ ε̃(k)ρ (I.6)

where...

r(k) =

√(
x(k) − xu

)2
+
(
y(k) − yu

)2
+
(
z(k) − zu

)2
(I.7)

(x, y, z) = user & satellite ECEF coordinates

δt = combined clock bias

ε̃ρ = accumulated pseudorange error

With pseudorange measurements from four or more satellites it is possible to linearize the system of

equations about an approximate user position, xo, using a Taylor series expansion, and then solve iteratively

using the Newton-Raphson method. This formulation is outlined in Equations I.8-I.14. The least squares

solution (Equation I.13) provides the position and time offsets from the initial guess (xo), and is iterated

upon until the position offset elements of x, (∆x,∆y,∆z), are sufficiently small (e.g. < 1cm).

∆ρ(k) = ρ
(k)
observed − ρ

(k)
modeled (I.8)
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=

(
∂ρ
∂x

∂ρ
∂y

∂ρ
∂z

∂ρ
∂t

)


∆x

∆y

∆z

∆t


+ ε̃(k)ρ (I.9)

expanded to include all visible satellites:

∆ρ1

∆ρ2

∆ρ3

...

∆ρ(k)


=



∂ρ1

∂x
∂ρ1

∂y
∂ρ1

∂z
∂ρ1

∂t

∂ρ2

∂x
∂ρ2

∂y
∂ρ2

∂z
∂ρ2

∂t

∂ρ3

∂x
∂ρ3

∂y
∂ρ3

∂z
∂ρ3

∂t

...
...

...
...

∂ρ(k)

∂x
∂ρ(k)

∂y
∂ρ(k)

∂z
∂ρ(k)

∂t





∆x

∆y

∆z

∆t


+



ε̃1ρ

ε̃2ρ

ε̃3ρ

...

ε̃
(k)
ρ


(I.10)

in matrix notation:

b = Ax + εεε (I.11)

where the design matrix...

A =



xo−x1

r1
yo−y1
r1

zo−z1
r1 1

xo−x2

r2
yo−y2
r2

zo−z2
r2 1

xo−x3

r3
yo−y3
r3

zo−z3
r3 1

...
...

...
...

xo−x(k)

r(k)

yo−y(k)

r(k)
zo−z(k)

r(k) 1


(I.12)

and the solution is converged upon by iterating through...

x =
(
ATA

)−1
ATb (I.13)

x̂ = xo + x (I.14)

where...

xo = approximate position and clock bias from initial guess or previous iteration

x = updated position and clock bias offsets from xo

x̂ = updated/final position and clock bias
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The covariance matrix, Cl, shown in Equation I.16, represents the visible satellite geometry and the

expected measurement variance. The a priori covariance weight, σa, is somewhat subjective, but is typically

set to the expected GPS positioning error standard deviation (e.g. code: 1 m, carrier: 1 cm are often used

for simplicity). Various terms in the covariance matrix are used as metrics of the solution quality.

C =
(
ATA

)−1
= σ2

a



σ2
x σxy σxz σxt

σyx σ2
y σyz σyt

σzx σzy σ2
z σzt

σtx σty σtz σ2
t


(I.15)

and rotated to the local ENV coordinate frame...

Cl = RlCRT
l = σ2

a



σ2
e σen σev σet

σne σ2
n σnv σnt

σve σvn σ2
v σvt

σte σtn σtv σ2
t


(I.16)

where...

σa = a priori covariance weight

Rl = rotation matrix from ECEF to ENV frames

The height standard deviation (σa · σv), RMS, PDOP, VDOP, and horizontal DOP (HDOP) are

solution quality metrics derived from the covariance matrix.

height standard deviation = σa · σv (I.17)

RMS =
√
σ2
x + σ2

y + σ2
z (I.18)

VDOP = σv (I.19)

HDOP =
√
σ2
n + σ2

e (I.20)

PDOP =
√
σ2
n + σ2

e + σ2
v (I.21)

As previously mentioned, the carrier phase least-squares solution formulation is similar to that for

pseudorange observations presented above; however, the design matrix, A, contains terms for the phase ambi-
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guity, N , of each visible satellite. The KAR method for determining the phase ambiguity is relatively complex

and is beyond the scope of this review. The NovAtel Waypoint software implements proprietary KAR tech-

niques, but in general, KAR is accomplished through differential GPS by forming “single differences” of the

measurement equation (I.2) between multiple receivers and one satellite, and “double differences” between

multiple receivers and multiple satellites in order to eliminate satellite clock biases and receiver clock biases.

Following the removal of these biases, a linear system of equations can be formed and the ambiguities can

be solved using least-squares.

It is important to note that KAR methodology requires changes in satellite geometry to initially lock

on and track the carrier phase, and then relies on continual tracking of the carrier phase over time [90]. This

has a few implications. First of all, satellite geometry changes fairly slowly relative to a static position on the

ground, so it may take tens of minutes to initially resolve the phase [16, 17]. In kinematic applications, such

as UAS flight, the motion of the receiver will change the geometry sufficiently such that this initialization

time is considerably less. This occurrence is evident in plots of the ambiguity drift (e.g. Figure 5.7 on

page 63), which show a high drift at the beginning and end of the time period (due to forward and reverse

processing) when the KAR algorithm is initially resolving the phase. However, these periods of relatively

high drift do not last longer than several seconds. Furthermore, phase cycle-slips and satellite loss-of-lock

will inhibit the KAR solution and will require reinitialization of the algorithm [16].
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Appendix J

Ancillary GPS Error Data

Figure J.1: The GPS tropospheric zenith delay spatial decorrelation. This figure was taken from Stoew and
Elgered[110] and shows the horizontal correlations of the zenith tropospheric delay for a one year period for
data collected throughout Sweden and Finland. The innovation correlations (green asterisks) are derived
from radiosonde observations of tropospheric zenith delay, and three curves are various model estimates.
This illustrates that the troposphere decorrelation scale is on the order of 200 km.
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Appendix K

Ancillary Runway Profiling Data

An initial test carried out to gauge the capability of the CULPIS was to park a van in the middle of

the Ilulissat runway and then fly over it with the Manta UAS to simply determine if it was possible to resolve

the van profile. As illustrated by Figure K.1, it was indeed possible to resolve the van profile from CULPIS

measurements. The data indicate a maximum van height of ∼5 ft, which is somewhat low relative to the

on-site measurement of ∼6.5m ft. These data were not differentially positioned or corrected for off-nadir

pointing, which introduce slight errors. The larger source of error likely results from the integrated spatial

sampling that occurs as the ULS footprint passes over the surface. Overall, this simple test illustrates the

basic ability of CULPIS to resolve meter-level surface variability.

The GPS positioning metrics as reported by the Waypoint software for the runway profile flights are

presented in Figure K.2. Spikes in the ambiguity drift show times at which lock on the carrier ambiguity is

lost and must be recovered. These times correspond to degraded positioning performance, as indicated by

elevated separation and standard deviation statistics.
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Figure K.1: A CULPIS-derived profile of the Hotel Arctic van. This data was collected during MUSCOX
while the van was parked on the Ilulissat airport runway and the Manta UAS flew overhead. The GPS data
have not been differentially positioned and the aircraft attitude data have not been used to geolocate the
laser range measurements. This is an initial example that illustrates the ability of the CULPIS to resolve
relatively fine (meter-level) surface variability.
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Appendix L

Ancillary MUSCOX Ice Sheet Observations

To illustrate the capabilities of CULPIS for ice sheet topography mapping, exemplary MUSCOX data

are presented. The CULPIS elevation data that were collected in the study region were spatially interpolated

using ordinary kriging to generate a fine-resolution (500 m grid) surface DEM, shown in Figure L.1, which

depicts the topography in the vicinity of the three melt lakes, labeled (1), (2), and (3). It should be noted

that Lake 1 drained completely around 15 July 2008, prior to the MUSCOX UAS flights. Notice that the

DEM depicts the location, shape, and size of the three lakes quite well amongst the undulating surface, as

shown by the elevation contours at 960, 983, and 1205 m. The DEM identifies a depressed region to the

south of Lake 1, which has potential to be the drainage basin. In addition to the fine-scale detail, the ice

sheet is shown to have a broad ∼1% E-W downward slope within the 22x6 km observation region.

Select examples of different ice types that were identified in CULPIS still imagery collected during

MUSCOX are shown in Figure L.2. Images (a)-(c) are still camera photos and image (d) is a frame from the

video camera. Image (a) depicts the outlet glacier calving front and heavily crevassed central glacial stream.

Image (b) shows a crevassed region of the outlet glacier further inland with a more linear, striated surface

structure. Image (c) shows the relatively smooth inland ice and the edge of a melt lake, and image (d) shows

the region of shattered and broken ice chunks in the location of drained lake 1. This ice was likely broken

during the kinematic ice shift that caused the lake to drain. The CULPIS observations presented here depict

the capabilities of CULPIS for mapping and imaging ice sheet surface topography with fine-resolution when

flown on UAS.
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Appendix M

Ancillary CASIE Sea Ice Observations

As a means to verify the ridge heights measured by the CULPIS altimetry data, and to demonstrate

an additional method for computing ridge heights, a CULPIS still photo was used to compute the height of

ridge features based on the sun elevation angle and the shadow lengths. The still photo and the four ridge

features that were examined are shown in Figure M.1. The red dots show the approximate locations of the

ridge peaks and shadows, and the black dot shows the level-ice reference surface height. These features are

part of the same ridge complex shown in Figure 6.2 on page 100. The shadow associated with ridge feature

4 falls on noticeably elevated ground, such that the calculated height is likely smaller than the true peak

height relative to the base of the ridge (indicated by the black dot). Ridge heights are computed from their

shadow lengths and the solar elevation angle1 using Equation M.1.

Hr = d · x · tan(θ) (M.1)

where...

Hr = ridge height

d = ridge feature and corresponding shadow feature pixel separation

x = pixel size = Ha · 2.85e−4 (derivation not shown)

Ha = aircraft altitude AGL

θ = solar elevation angle1

1 The solar elevation angle was acquired from the NOAA ESRL Solar Position Calculator online service.
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The CULPIS still photos from a subset region of Figure 6.1 shown on page 99 were used to classify

the surface using in-house thresholding methods developed by Dr. James Maslanik. Panel (a) of Figure M.2

is the true-color photo mosaic, and panel (b) shows the classified surface types, and illustrates the potential

for inexpensive UAS camera systems to provide fine-resolution classification maps. The surface type areal

coverage corresponding to Figure M.2 are presented in Table M.1.

With coincident ground coverage provided throughout CASIE by the CULPIS video data and mi-

croASAR imagery, it is possible to identify numerous sea ice types, or ice provinces, based on their differing

surface structures. These unique features are representative of the environmental conditions and forces that

the ice has experienced throughout its life history. As such, the visual appearance of the ice is quite beneficial

for inferring its age, type, and discerning characteristics. Select examples of sea ice provinces identified in

CASIE video and microASAR data are presented in Figures M.8 & M.9. With these complimentary datasets

it possible to characterize the surface topography, roughness, and backscatter, along with the fraction of open

water, melt ponds, ridges, and smooth ice, all of which are fundamental indicators of the ice type, age, and

geophysical evolution.

The left image of Figure M.8 shows broken angular ice near the edge of the ice pack. It is likely that

ocean surface waves propagating from the open ocean into the ice pack have fractured the ice. The larger

smooth ice pieces have low microwave return and the smaller chunks of floating ice have a high return. The

image on right shows a curvilinear feature that appears to be a lead that had previously frozen over and is

now melting. The left image of Figure M.9 shows a lead between two large ice floes that is filled with smaller

floes and jagged brash ice. The sharp edges of the brash ice suggest that the ice was recently fractured.

The microwave backscatter is considerably higher from the brash ice that it is from the ice floes. The right

image shows a heavily flooded region of ice adjacent to a meandering ridge. A considerable amount of snow

has accumulated along the ridge in the form of snow drifts. The drifts are relatively smooth and have low

backscatter, whereas the flooded ice has high backscatter. A final example of coincident microASAR and

video imagery is shown in Figure M.10.
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Table M.1: Statistics for the surface classification of the CASIE still photograph presented in Figure M.2.
This analysis was performed by Dr. James Maslanik.

surface class areal coverage
pond fraction (blue) 16% of ice cover
rough ice fraction (red) 7% of ice cover
smooth ice fraction (green) 77% of ice cover
total ice fraction (blue, red, and green) 86% of total area
open-water fraction (black) 14% of total area

Figure M.2: A surface classification performed using a still photograph collected during CASIE: (a) True-
color photo mosaic, which is a subset of the region shown in Figure 6.1 on page 99. (b) Surface classification
of ponds and flooded ice (blue), rough and ridged ice (red), smooth ice (green), and open-water (black).
The classification statistics corresponding to these images are presented in Table M.1. This analysis was
performed by Dr. James Maslanik.
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Figure M.7: CASIE flight 9 example sea ice and open-ocean wave profiles and FFTs. The sinusoidal nature
of the open-ocean waves corresponds to a strong peak in the FFT spectral power near a periodicity (i.e.
wavelength) of 100 m. The sea ice surface profile has a more uniform power distribution, which indicates a
more random distribution of ice elevations.
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